File size: 1,073 Bytes
dae59a8
 
 
 
9d5ead8
dae59a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d65e461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load model and tokenizer
MODEL_NAME = "Qwen/Qwen2.5-Coder-1.5B"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)

# Define the refactor function
def refactor_code(message, code):
    input_text = f"{message}\n\nCode:\n{code}"
    inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True)
    outputs = model.generate(inputs["input_ids"], max_new_tokens=200)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio Interface
interface = gr.Interface(
    fn=refactor_code,
    inputs=[
        gr.Textbox(label="Message (Instruction)"),
        gr.Textbox(label="Code", lines=15),
    ],
    outputs="text",
    title="Code Refactor with Qwen Model",
    description="Provide an instruction and code to refactor. The model will return the updated code."
)

# Launch the app
interface.launch(share=True)