import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                AutoEvalColumn.params.name,
                type="slider",
                min=0.01,
                max=150,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                AutoEvalColumn.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=True
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submission Instructions ", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
            # with gr.Column():
            #     with gr.Row():
            #         gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            #     with gr.Column():
            #         with gr.Accordion(
            #             f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 finished_eval_table = gr.components.Dataframe(
            #                     value=finished_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            #         with gr.Accordion(
            #             f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 running_eval_table = gr.components.Dataframe(
            #                     value=running_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )

            #         with gr.Accordion(
            #             f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
            #             open=False,
            #         ):
            #             with gr.Row():
            #                 pending_eval_table = gr.components.Dataframe(
            #                     value=pending_eval_queue_df,
            #                     headers=EVAL_COLS,
            #                     datatype=EVAL_TYPES,
            #                     row_count=5,
            #                 )
            # with gr.Row():
            #     gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")

            # with gr.Row():
            #     with gr.Column():
            #         model_name_textbox = gr.Textbox(label="Model name")
            #         revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
            #         model_type = gr.Dropdown(
            #             choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
            #             label="Model type",
            #             multiselect=False,
            #             value=None,
            #             interactive=True,
            #         )

            #     with gr.Column():
            #         precision = gr.Dropdown(
            #             choices=[i.value.name for i in Precision if i != Precision.Unknown],
            #             label="Precision",
            #             multiselect=False,
            #             value="float16",
            #             interactive=True,
            #         )
            #         weight_type = gr.Dropdown(
            #             choices=[i.value.name for i in WeightType],
            #             label="Weights type",
            #             multiselect=False,
            #             value="Original",
            #             interactive=True,
            #         )
            #         base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            # submit_button = gr.Button("Submit Eval")
            # submission_result = gr.Markdown()
            # submit_button.click(
            #     add_new_eval,
            #     [
            #         model_name_textbox,
            #         base_model_name_textbox,
            #         revision_name_textbox,
            #         precision,
            #         weight_type,
            #         model_type,
            #     ],
            #     submission_result,
            # )

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()