Synnove commited on
Commit
bb6df54
·
verified ·
1 Parent(s): b28928e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -269
app.py CHANGED
@@ -94,272 +94,3 @@ def run_and_submit_one():
94
 
95
  run_and_submit_one()
96
 
97
-
98
- #Client setup
99
- #token = HF_TOKEN
100
- #model_repo_id = chat_completion eller question_answering
101
-
102
- # llm = LLMFunction.from_huggingface_inference_api(
103
- # repo_id="google/flan-t5-base", #
104
- # token="HF_TOKEN "
105
- # )
106
-
107
- # agent = CodeAgent(llm=llm)
108
- # response = agent("Translate 'How are you?' to German.")
109
- # print(response)
110
-
111
-
112
-
113
-
114
- #----
115
- # client = InferenceClient(
116
- # provider="hf-inference",
117
- # api_key=os.environ["HF_TOKEN"],
118
- # )
119
-
120
- # completion = client.chat.completions.create(
121
- # model="tiiuae/falcon-rw-1b",
122
- # messages=[
123
- # {
124
- # "role": "user",
125
- # "content": "What is the capital of France?"
126
- # }
127
- # ],
128
- # )
129
-
130
- # completion = client.chat.completions.create(
131
- # model="sarvamai/sarvam-m",
132
- # messages=[
133
- # {
134
- # "role": "user",
135
- # "content": "What is the capital of France?"
136
- # }
137
- # ],
138
- # )
139
-
140
- # (Keep Constants as is)
141
- # --- Constants ---
142
- DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
143
-
144
- # --- Basic Agent Definition ---
145
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
146
-
147
- #Tools
148
-
149
-
150
- #Model
151
- model = InferenceClientModel() #Default
152
-
153
- #Agent
154
- code_agent = CodeAgent(tools=[], model=model)
155
- #code_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
156
-
157
- class BasicAgent:
158
- def __init__(self):
159
- print("BasicAgent initialized.")
160
- def __call__(self, question: str) -> str:
161
- print(f"Agent received question (first 50 chars): {question[:50]}...")
162
-
163
- fixed_answer = "This is a default answer."
164
- print(f"Agent returning fixed answer: {fixed_answer}")
165
- return fixed_answer
166
-
167
- class BasicCodeAgent:
168
- def __init__(self):
169
- model = InferenceClientModel() #Cause of
170
-
171
- # model = HfApiModel(
172
- # max_tokens=2096,
173
- # temperature=0.5,
174
- # model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
175
- # custom_role_conversions=None,
176
- # )
177
-
178
- self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
179
- print("BasicCodeAgent initialized.")
180
-
181
- def __call__(self, question: str) -> str:
182
- print(f"BasicCodeAgent received question (first 50 chars): {question[:50]}...")
183
- fixed_answer = "This is a default answer."
184
- #answer = self.agent.run(question)
185
- print(f"BasicCodeAgent returning fixed answer: {fixed_answer}")
186
- return answer
187
-
188
- # def run_and_submit_all( profile: gr.OAuthProfile | None):
189
- # """
190
- # Fetches all questions, runs the BasicAgent on them, submits all answers,
191
- # and displays the results.
192
- # """
193
- # # --- Determine HF Space Runtime URL and Repo URL ---
194
- # space_id = os.getenv("/Synnove/Final_Assignment_Template") # Get the SPACE_ID for sending link to the code
195
-
196
- # if profile:
197
- # username= f"{profile.username}"
198
- # print(f"User logged in: {username}")
199
- # else:
200
- # print("User not logged in.")
201
- # return "Please Login to Hugging Face with the button.", None
202
-
203
- # api_url = "https://agents-course-unit4-scoring.hf.space"
204
- # questions_url = f"{api_url}/questions"
205
- # submit_url = f"{api_url}/submit"
206
-
207
- # # 1. Instantiate Agent ( modify this part to create your agent)
208
- # try:
209
- # #agent = BasicAgent()
210
- # agent = BasicCodeAgent()
211
-
212
- # except Exception as e:
213
- # print(f"Error instantiating agent: {e}")
214
- # return f"Error initializing agent: {e}", None
215
- # # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
216
- # agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
217
- # print(agent_code)
218
-
219
- # # 2. Fetch Questions
220
- # print(f"Fetching questions from: {questions_url}")
221
- # try:
222
- # response = requests.get(questions_url, timeout=15)
223
- # response.raise_for_status()
224
- # questions_data = response.json()
225
- # if not questions_data:
226
- # print("Fetched questions list is empty.")
227
- # return "Fetched questions list is empty or invalid format.", None
228
- # print(f"Fetched {len(questions_data)} questions.")
229
- # except requests.exceptions.RequestException as e:
230
- # print(f"Error fetching questions: {e}")
231
- # return f"Error fetching questions: {e}", None
232
- # except requests.exceptions.JSONDecodeError as e:
233
- # print(f"Error decoding JSON response from questions endpoint: {e}")
234
- # print(f"Response text: {response.text[:500]}")
235
- # return f"Error decoding server response for questions: {e}", None
236
- # except Exception as e:
237
- # print(f"An unexpected error occurred fetching questions: {e}")
238
- # return f"An unexpected error occurred fetching questions: {e}", None
239
-
240
- # # 3. Run your Agent
241
- # results_log = []
242
- # answers_payload = []
243
- # print(f"Running agent on {len(questions_data)} questions...")
244
- # print(questions_data)
245
- # for item in questions_data:
246
- # task_id = item.get("task_id")
247
- # question_text = item.get("question")
248
- # if not task_id or question_text is None:
249
- # print(f"Skipping item with missing task_id or question: {item}")
250
- # continue
251
- # try:
252
- # submitted_answer = agent(question_text)
253
- # answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
254
- # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
255
- # except Exception as e:
256
- # print(f"Error running agent on task {task_id}: {e}")
257
- # results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
258
-
259
- # if not answers_payload:
260
- # print("Agent did not produce any answers to submit.")
261
- # return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
262
-
263
- # # 4. Prepare Submission
264
- # submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
265
- # status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
266
- # print(status_update)
267
-
268
- # # 5. Submit
269
- # print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
270
- # try:
271
- # response = requests.post(submit_url, json=submission_data, timeout=60)
272
- # response.raise_for_status()
273
- # result_data = response.json()
274
- # final_status = (
275
- # f"Submission Successful!\n"
276
- # f"User: {result_data.get('username')}\n"
277
- # f"Overall Score: {result_data.get('score', 'N/A')}% "
278
- # f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
279
- # f"Message: {result_data.get('message', 'No message received.')}"
280
- # )
281
- # print("Submission successful.")
282
- # results_df = pd.DataFrame(results_log)
283
- # return final_status, results_df
284
- # except requests.exceptions.HTTPError as e:
285
- # error_detail = f"Server responded with status {e.response.status_code}."
286
- # try:
287
- # error_json = e.response.json()
288
- # error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
289
- # except requests.exceptions.JSONDecodeError:
290
- # error_detail += f" Response: {e.response.text[:500]}"
291
- # status_message = f"Submission Failed: {error_detail}"
292
- # print(status_message)
293
- # results_df = pd.DataFrame(results_log)
294
- # return status_message, results_df
295
- # except requests.exceptions.Timeout:
296
- # status_message = "Submission Failed: The request timed out."
297
- # print(status_message)
298
- # results_df = pd.DataFrame(results_log)
299
- # return status_message, results_df
300
- # except requests.exceptions.RequestException as e:
301
- # status_message = f"Submission Failed: Network error - {e}"
302
- # print(status_message)
303
- # results_df = pd.DataFrame(results_log)
304
- # return status_message, results_df
305
- # except run_and_submit_allxception as e:
306
- # status_message = f"An unexpected error occurred during submission: {e}"
307
- # print(status_message)
308
- # results_df = pd.DataFrame(results_log)
309
- # return status_message, results_df
310
-
311
-
312
- # # --- Build Gradio Interface using Blocks ---
313
- # with gr.Blocks() as demo:
314
- # gr.Markdown("# Basic Agent Evaluation Runner")
315
- # gr.Markdown(
316
- # """
317
- # **Instructions:**
318
-
319
- # 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
320
- # 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
321
- # 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
322
-
323
- # ---
324
- # **Disclaimers:**
325
- # Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
326
- # This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
327
- # """
328
- # )
329
-
330
- # gr.LoginButton()
331
-
332
- # run_button = gr.Button("Run Evaluation & Submit All Answers")
333
-
334
- # status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
335
- # # Removed max_rows=10 from DataFrame constructor
336
- # results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
337
-
338
- # run_button.click(
339
- # fn=run_and_submit_all,
340
- # outputs=[status_output, results_table]
341
- # )
342
-
343
- # if __name__ == "__main__":
344
- # print("\n" + "-"*30 + " App Starting " + "-"*30)
345
- # # Check for SPACE_HOST and SPACE_ID at startup for information
346
- # space_host_startup = os.getenv("SPACE_HOST")
347
- # space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
348
-
349
- # if space_host_startup:
350
- # print(f"✅ SPACE_HOST found: {space_host_startup}")
351
- # print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
352
- # else:
353
- # print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
354
-
355
- # if space_id_startup: # Print repo URLs if SPACE_ID is found
356
- # print(f"✅ SPACE_ID found: {space_id_startup}")
357
- # print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
358
- # print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
359
- # else:
360
- # print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
361
-
362
- # print("-"*(60 + len(" App Starting ")) + "\n")
363
-
364
- # print("Launching Gradio Interface for Basic Agent Evaluation...")
365
- # demo.launch(debug=True, share=False)
 
94
 
95
  run_and_submit_one()
96