Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -94,272 +94,3 @@ def run_and_submit_one():
|
|
94 |
|
95 |
run_and_submit_one()
|
96 |
|
97 |
-
|
98 |
-
#Client setup
|
99 |
-
#token = HF_TOKEN
|
100 |
-
#model_repo_id = chat_completion eller question_answering
|
101 |
-
|
102 |
-
# llm = LLMFunction.from_huggingface_inference_api(
|
103 |
-
# repo_id="google/flan-t5-base", #
|
104 |
-
# token="HF_TOKEN "
|
105 |
-
# )
|
106 |
-
|
107 |
-
# agent = CodeAgent(llm=llm)
|
108 |
-
# response = agent("Translate 'How are you?' to German.")
|
109 |
-
# print(response)
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
#----
|
115 |
-
# client = InferenceClient(
|
116 |
-
# provider="hf-inference",
|
117 |
-
# api_key=os.environ["HF_TOKEN"],
|
118 |
-
# )
|
119 |
-
|
120 |
-
# completion = client.chat.completions.create(
|
121 |
-
# model="tiiuae/falcon-rw-1b",
|
122 |
-
# messages=[
|
123 |
-
# {
|
124 |
-
# "role": "user",
|
125 |
-
# "content": "What is the capital of France?"
|
126 |
-
# }
|
127 |
-
# ],
|
128 |
-
# )
|
129 |
-
|
130 |
-
# completion = client.chat.completions.create(
|
131 |
-
# model="sarvamai/sarvam-m",
|
132 |
-
# messages=[
|
133 |
-
# {
|
134 |
-
# "role": "user",
|
135 |
-
# "content": "What is the capital of France?"
|
136 |
-
# }
|
137 |
-
# ],
|
138 |
-
# )
|
139 |
-
|
140 |
-
# (Keep Constants as is)
|
141 |
-
# --- Constants ---
|
142 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
143 |
-
|
144 |
-
# --- Basic Agent Definition ---
|
145 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
146 |
-
|
147 |
-
#Tools
|
148 |
-
|
149 |
-
|
150 |
-
#Model
|
151 |
-
model = InferenceClientModel() #Default
|
152 |
-
|
153 |
-
#Agent
|
154 |
-
code_agent = CodeAgent(tools=[], model=model)
|
155 |
-
#code_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
|
156 |
-
|
157 |
-
class BasicAgent:
|
158 |
-
def __init__(self):
|
159 |
-
print("BasicAgent initialized.")
|
160 |
-
def __call__(self, question: str) -> str:
|
161 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
162 |
-
|
163 |
-
fixed_answer = "This is a default answer."
|
164 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
165 |
-
return fixed_answer
|
166 |
-
|
167 |
-
class BasicCodeAgent:
|
168 |
-
def __init__(self):
|
169 |
-
model = InferenceClientModel() #Cause of
|
170 |
-
|
171 |
-
# model = HfApiModel(
|
172 |
-
# max_tokens=2096,
|
173 |
-
# temperature=0.5,
|
174 |
-
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
|
175 |
-
# custom_role_conversions=None,
|
176 |
-
# )
|
177 |
-
|
178 |
-
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
|
179 |
-
print("BasicCodeAgent initialized.")
|
180 |
-
|
181 |
-
def __call__(self, question: str) -> str:
|
182 |
-
print(f"BasicCodeAgent received question (first 50 chars): {question[:50]}...")
|
183 |
-
fixed_answer = "This is a default answer."
|
184 |
-
#answer = self.agent.run(question)
|
185 |
-
print(f"BasicCodeAgent returning fixed answer: {fixed_answer}")
|
186 |
-
return answer
|
187 |
-
|
188 |
-
# def run_and_submit_all( profile: gr.OAuthProfile | None):
|
189 |
-
# """
|
190 |
-
# Fetches all questions, runs the BasicAgent on them, submits all answers,
|
191 |
-
# and displays the results.
|
192 |
-
# """
|
193 |
-
# # --- Determine HF Space Runtime URL and Repo URL ---
|
194 |
-
# space_id = os.getenv("/Synnove/Final_Assignment_Template") # Get the SPACE_ID for sending link to the code
|
195 |
-
|
196 |
-
# if profile:
|
197 |
-
# username= f"{profile.username}"
|
198 |
-
# print(f"User logged in: {username}")
|
199 |
-
# else:
|
200 |
-
# print("User not logged in.")
|
201 |
-
# return "Please Login to Hugging Face with the button.", None
|
202 |
-
|
203 |
-
# api_url = "https://agents-course-unit4-scoring.hf.space"
|
204 |
-
# questions_url = f"{api_url}/questions"
|
205 |
-
# submit_url = f"{api_url}/submit"
|
206 |
-
|
207 |
-
# # 1. Instantiate Agent ( modify this part to create your agent)
|
208 |
-
# try:
|
209 |
-
# #agent = BasicAgent()
|
210 |
-
# agent = BasicCodeAgent()
|
211 |
-
|
212 |
-
# except Exception as e:
|
213 |
-
# print(f"Error instantiating agent: {e}")
|
214 |
-
# return f"Error initializing agent: {e}", None
|
215 |
-
# # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
216 |
-
# agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
217 |
-
# print(agent_code)
|
218 |
-
|
219 |
-
# # 2. Fetch Questions
|
220 |
-
# print(f"Fetching questions from: {questions_url}")
|
221 |
-
# try:
|
222 |
-
# response = requests.get(questions_url, timeout=15)
|
223 |
-
# response.raise_for_status()
|
224 |
-
# questions_data = response.json()
|
225 |
-
# if not questions_data:
|
226 |
-
# print("Fetched questions list is empty.")
|
227 |
-
# return "Fetched questions list is empty or invalid format.", None
|
228 |
-
# print(f"Fetched {len(questions_data)} questions.")
|
229 |
-
# except requests.exceptions.RequestException as e:
|
230 |
-
# print(f"Error fetching questions: {e}")
|
231 |
-
# return f"Error fetching questions: {e}", None
|
232 |
-
# except requests.exceptions.JSONDecodeError as e:
|
233 |
-
# print(f"Error decoding JSON response from questions endpoint: {e}")
|
234 |
-
# print(f"Response text: {response.text[:500]}")
|
235 |
-
# return f"Error decoding server response for questions: {e}", None
|
236 |
-
# except Exception as e:
|
237 |
-
# print(f"An unexpected error occurred fetching questions: {e}")
|
238 |
-
# return f"An unexpected error occurred fetching questions: {e}", None
|
239 |
-
|
240 |
-
# # 3. Run your Agent
|
241 |
-
# results_log = []
|
242 |
-
# answers_payload = []
|
243 |
-
# print(f"Running agent on {len(questions_data)} questions...")
|
244 |
-
# print(questions_data)
|
245 |
-
# for item in questions_data:
|
246 |
-
# task_id = item.get("task_id")
|
247 |
-
# question_text = item.get("question")
|
248 |
-
# if not task_id or question_text is None:
|
249 |
-
# print(f"Skipping item with missing task_id or question: {item}")
|
250 |
-
# continue
|
251 |
-
# try:
|
252 |
-
# submitted_answer = agent(question_text)
|
253 |
-
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
254 |
-
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
255 |
-
# except Exception as e:
|
256 |
-
# print(f"Error running agent on task {task_id}: {e}")
|
257 |
-
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
258 |
-
|
259 |
-
# if not answers_payload:
|
260 |
-
# print("Agent did not produce any answers to submit.")
|
261 |
-
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
262 |
-
|
263 |
-
# # 4. Prepare Submission
|
264 |
-
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
265 |
-
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
266 |
-
# print(status_update)
|
267 |
-
|
268 |
-
# # 5. Submit
|
269 |
-
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
270 |
-
# try:
|
271 |
-
# response = requests.post(submit_url, json=submission_data, timeout=60)
|
272 |
-
# response.raise_for_status()
|
273 |
-
# result_data = response.json()
|
274 |
-
# final_status = (
|
275 |
-
# f"Submission Successful!\n"
|
276 |
-
# f"User: {result_data.get('username')}\n"
|
277 |
-
# f"Overall Score: {result_data.get('score', 'N/A')}% "
|
278 |
-
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
279 |
-
# f"Message: {result_data.get('message', 'No message received.')}"
|
280 |
-
# )
|
281 |
-
# print("Submission successful.")
|
282 |
-
# results_df = pd.DataFrame(results_log)
|
283 |
-
# return final_status, results_df
|
284 |
-
# except requests.exceptions.HTTPError as e:
|
285 |
-
# error_detail = f"Server responded with status {e.response.status_code}."
|
286 |
-
# try:
|
287 |
-
# error_json = e.response.json()
|
288 |
-
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
289 |
-
# except requests.exceptions.JSONDecodeError:
|
290 |
-
# error_detail += f" Response: {e.response.text[:500]}"
|
291 |
-
# status_message = f"Submission Failed: {error_detail}"
|
292 |
-
# print(status_message)
|
293 |
-
# results_df = pd.DataFrame(results_log)
|
294 |
-
# return status_message, results_df
|
295 |
-
# except requests.exceptions.Timeout:
|
296 |
-
# status_message = "Submission Failed: The request timed out."
|
297 |
-
# print(status_message)
|
298 |
-
# results_df = pd.DataFrame(results_log)
|
299 |
-
# return status_message, results_df
|
300 |
-
# except requests.exceptions.RequestException as e:
|
301 |
-
# status_message = f"Submission Failed: Network error - {e}"
|
302 |
-
# print(status_message)
|
303 |
-
# results_df = pd.DataFrame(results_log)
|
304 |
-
# return status_message, results_df
|
305 |
-
# except run_and_submit_allxception as e:
|
306 |
-
# status_message = f"An unexpected error occurred during submission: {e}"
|
307 |
-
# print(status_message)
|
308 |
-
# results_df = pd.DataFrame(results_log)
|
309 |
-
# return status_message, results_df
|
310 |
-
|
311 |
-
|
312 |
-
# # --- Build Gradio Interface using Blocks ---
|
313 |
-
# with gr.Blocks() as demo:
|
314 |
-
# gr.Markdown("# Basic Agent Evaluation Runner")
|
315 |
-
# gr.Markdown(
|
316 |
-
# """
|
317 |
-
# **Instructions:**
|
318 |
-
|
319 |
-
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
320 |
-
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
321 |
-
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
322 |
-
|
323 |
-
# ---
|
324 |
-
# **Disclaimers:**
|
325 |
-
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
326 |
-
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
327 |
-
# """
|
328 |
-
# )
|
329 |
-
|
330 |
-
# gr.LoginButton()
|
331 |
-
|
332 |
-
# run_button = gr.Button("Run Evaluation & Submit All Answers")
|
333 |
-
|
334 |
-
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
335 |
-
# # Removed max_rows=10 from DataFrame constructor
|
336 |
-
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
337 |
-
|
338 |
-
# run_button.click(
|
339 |
-
# fn=run_and_submit_all,
|
340 |
-
# outputs=[status_output, results_table]
|
341 |
-
# )
|
342 |
-
|
343 |
-
# if __name__ == "__main__":
|
344 |
-
# print("\n" + "-"*30 + " App Starting " + "-"*30)
|
345 |
-
# # Check for SPACE_HOST and SPACE_ID at startup for information
|
346 |
-
# space_host_startup = os.getenv("SPACE_HOST")
|
347 |
-
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
348 |
-
|
349 |
-
# if space_host_startup:
|
350 |
-
# print(f"✅ SPACE_HOST found: {space_host_startup}")
|
351 |
-
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
352 |
-
# else:
|
353 |
-
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
354 |
-
|
355 |
-
# if space_id_startup: # Print repo URLs if SPACE_ID is found
|
356 |
-
# print(f"✅ SPACE_ID found: {space_id_startup}")
|
357 |
-
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
358 |
-
# print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
359 |
-
# else:
|
360 |
-
# print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
361 |
-
|
362 |
-
# print("-"*(60 + len(" App Starting ")) + "\n")
|
363 |
-
|
364 |
-
# print("Launching Gradio Interface for Basic Agent Evaluation...")
|
365 |
-
# demo.launch(debug=True, share=False)
|
|
|
94 |
|
95 |
run_and_submit_one()
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|