Synnove's picture
Update app.py
b28928e verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#import smolagents #to test
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
from huggingface_hub import InferenceClient
import json
api_url = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def load_questions_from_file(filepath="questions.json"):
try:
with open(filepath, "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
print("Loaded file is empty.")
return "Loaded file is empty.", None
print(f"Loaded {len(questions_data)} questions from file.")
return "Loaded questions successfully.", questions_data
except FileNotFoundError:
print("File not found. Please run the API fetch first.")
return "File not found.", None
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return f"Error decoding JSON: {e}", None
except Exception as e:
print(f"Unexpected error: {e}")
return f"Unexpected error: {e}", None
#set up
#token
#Model
#Agent
#
def run_and_submit_one():
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# 2. Fetch Questions by loading from local json
status_message, questions_data = load_questions_from_file()
if questions_data is not None and len(questions_data) > 0:
first_question = questions_data[0]
print("First question object:", first_question)
#To test
question_text = first_question.get("question")
task_id = first_question.get("task_id")
print(f"\nTask ID: {task_id}")
print(f"Question: {question_text}")
else:
print("No data found.")
# 3. Run your Agent
results_log = []
answers_payload = []
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
run_and_submit_one()
#Client setup
#token = HF_TOKEN
#model_repo_id = chat_completion eller question_answering
# llm = LLMFunction.from_huggingface_inference_api(
# repo_id="google/flan-t5-base", #
# token="HF_TOKEN "
# )
# agent = CodeAgent(llm=llm)
# response = agent("Translate 'How are you?' to German.")
# print(response)
#----
# client = InferenceClient(
# provider="hf-inference",
# api_key=os.environ["HF_TOKEN"],
# )
# completion = client.chat.completions.create(
# model="tiiuae/falcon-rw-1b",
# messages=[
# {
# "role": "user",
# "content": "What is the capital of France?"
# }
# ],
# )
# completion = client.chat.completions.create(
# model="sarvamai/sarvam-m",
# messages=[
# {
# "role": "user",
# "content": "What is the capital of France?"
# }
# ],
# )
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#Tools
#Model
model = InferenceClientModel() #Default
#Agent
code_agent = CodeAgent(tools=[], model=model)
#code_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
class BasicCodeAgent:
def __init__(self):
model = InferenceClientModel() #Cause of
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
print("BasicCodeAgent initialized.")
def __call__(self, question: str) -> str:
print(f"BasicCodeAgent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
#answer = self.agent.run(question)
print(f"BasicCodeAgent returning fixed answer: {fixed_answer}")
return answer
# def run_and_submit_all( profile: gr.OAuthProfile | None):
# """
# Fetches all questions, runs the BasicAgent on them, submits all answers,
# and displays the results.
# """
# # --- Determine HF Space Runtime URL and Repo URL ---
# space_id = os.getenv("/Synnove/Final_Assignment_Template") # Get the SPACE_ID for sending link to the code
# if profile:
# username= f"{profile.username}"
# print(f"User logged in: {username}")
# else:
# print("User not logged in.")
# return "Please Login to Hugging Face with the button.", None
# api_url = "https://agents-course-unit4-scoring.hf.space"
# questions_url = f"{api_url}/questions"
# submit_url = f"{api_url}/submit"
# # 1. Instantiate Agent ( modify this part to create your agent)
# try:
# #agent = BasicAgent()
# agent = BasicCodeAgent()
# except Exception as e:
# print(f"Error instantiating agent: {e}")
# return f"Error initializing agent: {e}", None
# # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
# agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# print(agent_code)
# # 2. Fetch Questions
# print(f"Fetching questions from: {questions_url}")
# try:
# response = requests.get(questions_url, timeout=15)
# response.raise_for_status()
# questions_data = response.json()
# if not questions_data:
# print("Fetched questions list is empty.")
# return "Fetched questions list is empty or invalid format.", None
# print(f"Fetched {len(questions_data)} questions.")
# except requests.exceptions.RequestException as e:
# print(f"Error fetching questions: {e}")
# return f"Error fetching questions: {e}", None
# except requests.exceptions.JSONDecodeError as e:
# print(f"Error decoding JSON response from questions endpoint: {e}")
# print(f"Response text: {response.text[:500]}")
# return f"Error decoding server response for questions: {e}", None
# except Exception as e:
# print(f"An unexpected error occurred fetching questions: {e}")
# return f"An unexpected error occurred fetching questions: {e}", None
# # 3. Run your Agent
# results_log = []
# answers_payload = []
# print(f"Running agent on {len(questions_data)} questions...")
# print(questions_data)
# for item in questions_data:
# task_id = item.get("task_id")
# question_text = item.get("question")
# if not task_id or question_text is None:
# print(f"Skipping item with missing task_id or question: {item}")
# continue
# try:
# submitted_answer = agent(question_text)
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# except Exception as e:
# print(f"Error running agent on task {task_id}: {e}")
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
# if not answers_payload:
# print("Agent did not produce any answers to submit.")
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# # 4. Prepare Submission
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
# print(status_update)
# # 5. Submit
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
# try:
# response = requests.post(submit_url, json=submission_data, timeout=60)
# response.raise_for_status()
# result_data = response.json()
# final_status = (
# f"Submission Successful!\n"
# f"User: {result_data.get('username')}\n"
# f"Overall Score: {result_data.get('score', 'N/A')}% "
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
# f"Message: {result_data.get('message', 'No message received.')}"
# )
# print("Submission successful.")
# results_df = pd.DataFrame(results_log)
# return final_status, results_df
# except requests.exceptions.HTTPError as e:
# error_detail = f"Server responded with status {e.response.status_code}."
# try:
# error_json = e.response.json()
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
# except requests.exceptions.JSONDecodeError:
# error_detail += f" Response: {e.response.text[:500]}"
# status_message = f"Submission Failed: {error_detail}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except requests.exceptions.Timeout:
# status_message = "Submission Failed: The request timed out."
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except requests.exceptions.RequestException as e:
# status_message = f"Submission Failed: Network error - {e}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except run_and_submit_allxception as e:
# status_message = f"An unexpected error occurred during submission: {e}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# # --- Build Gradio Interface using Blocks ---
# with gr.Blocks() as demo:
# gr.Markdown("# Basic Agent Evaluation Runner")
# gr.Markdown(
# """
# **Instructions:**
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
# ---
# **Disclaimers:**
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
# """
# )
# gr.LoginButton()
# run_button = gr.Button("Run Evaluation & Submit All Answers")
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# # Removed max_rows=10 from DataFrame constructor
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# run_button.click(
# fn=run_and_submit_all,
# outputs=[status_output, results_table]
# )
# if __name__ == "__main__":
# print("\n" + "-"*30 + " App Starting " + "-"*30)
# # Check for SPACE_HOST and SPACE_ID at startup for information
# space_host_startup = os.getenv("SPACE_HOST")
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# if space_host_startup:
# print(f"✅ SPACE_HOST found: {space_host_startup}")
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
# else:
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
# if space_id_startup: # Print repo URLs if SPACE_ID is found
# print(f"✅ SPACE_ID found: {space_id_startup}")
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
# print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
# else:
# print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
# print("-"*(60 + len(" App Starting ")) + "\n")
# print("Launching Gradio Interface for Basic Agent Evaluation...")
# demo.launch(debug=True, share=False)