Synnove's picture
Update app.py
20fb90e verified
raw
history blame
3.66 kB
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#import smolagents #to test
from smolagents import CodeAgent, InferenceClientModel, load_tool, tool #DuckDuckGoSearchTool,
from huggingface_hub import InferenceClient
import json
from final_answer import FinalAnswerTool
from visit_webpage import VisitWebpageTool
from web_search import web_search_DuckDuckGoSearchTool
from wikipediaLookup import WikipediaLookupTool
api_url = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
def load_questions_from_file(filepath="questions.json"):
try:
with open(filepath, "r", encoding="utf-8") as f:
questions_data = json.load(f)
if not questions_data:
print("Loaded file is empty.")
return "Loaded file is empty.", None
print(f"Loaded {len(questions_data)} questions from file.")
return "Loaded questions successfully.", questions_data
except FileNotFoundError:
print("File not found. Please run the API fetch first.")
return "File not found.", None
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
return f"Error decoding JSON: {e}", None
except Exception as e:
print(f"Unexpected error: {e}")
return f"Unexpected error: {e}", None
#set up
#token
#Model
model = InferenceClientModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
#Tools
final_answer = FinalAnswerTool()
#duckDuckGoSearch = DuckDuckGoSearchTool() #smolagent version
visitWebpage = VisitWebpageTool()
wikipediaLookup = WikipediaLookupTool()
webSearch = web_search_DuckDuckGoSearchTool()
#Agent
agent_codeagent = CodeAgent(
model=model,
tools=[final_answer, wikipediaLookup, visitWebpage, webSearch], ## add your tools here (don't remove final answer) duckDuckGoSearch,
max_steps=3,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None
#prompt_templates=prompt_templates
)
# Gradio handler that runs the agent
def run_once(state):
if state is not None:
return "Already run once. Refresh to rerun.", state
status_message, questions_data = load_questions_from_file()
if questions_data is None or len(questions_data) == 0:
return "No questions found or failed to load.", None
question = questions_data[0]
question_text = question["question"]
task_id = question["task_id"]
print(f"\nTask ID: {task_id}")
print(f"Question: {question_text}")
try:
answer = agent_codeagent(question_text)
output = f"Answer to task {task_id}:\n{answer}"
return output, output
except Exception as e:
return f"Error running agent: {e}", None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Run AI Agent Once")
output_text = gr.Textbox(label="Agent Output", lines=10)
run_button = gr.Button("Run Agent")
state = gr.State() # cache variable to prevent re-runs
run_button.click(fn=run_once, inputs=state, outputs=[output_text, state])
# Launch the interface
demo.launch()