Spaces:
Sleeping
Sleeping
File size: 11,319 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 3fd800d b0d2e2d c2a782d 71006e1 c2a782d 34e1112 c2a782d 34e1112 c2a782d 34e1112 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 228df7a 9bb5b4b 228df7a 2b35f1c b0d2e2d 2b35f1c 228df7a 74bf47c 228df7a 31243f4 228df7a 31243f4 4021bf3 74bf47c 3230253 7d4421c 3230253 e1e3780 d12d4c3 74bf47c e1e3780 74bf47c 3fdff02 74bf47c 3230253 74bf47c 8b8a315 74bf47c 8b8a315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
#import smolagents #to test
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
from huggingface_hub import InferenceClient
#Client setup
#token = HF_TOKEN
#model_repo_id = chat_completion eller question_answering
from smolagent import CodeAgent, LLMFunction
llm = LLMFunction.from_huggingface_inference_api(
repo_id="google/flan-t5-base", #
token="HF_TOKEN "
)
agent = CodeAgent(llm=llm)
response = agent("Translate 'How are you?' to German.")
print(response)
#----
# client = InferenceClient(
# provider="hf-inference",
# api_key=os.environ["HF_TOKEN"],
# )
# completion = client.chat.completions.create(
# model="tiiuae/falcon-rw-1b",
# messages=[
# {
# "role": "user",
# "content": "What is the capital of France?"
# }
# ],
# )
# completion = client.chat.completions.create(
# model="sarvamai/sarvam-m",
# messages=[
# {
# "role": "user",
# "content": "What is the capital of France?"
# }
# ],
# )
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
#Tools
#Model
model = InferenceClientModel() #Default
#Agent
code_agent = CodeAgent(tools=[], model=model)
#code_agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
class BasicAgent:
def __init__(self):
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
print(f"Agent returning fixed answer: {fixed_answer}")
return fixed_answer
class BasicCodeAgent:
def __init__(self):
model = InferenceClientModel() #Cause of
# model = HfApiModel(
# max_tokens=2096,
# temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
# custom_role_conversions=None,
# )
self.agent = CodeAgent(tools=[DuckDuckGoSearchTool()], model=model)
print("BasicCodeAgent initialized.")
def __call__(self, question: str) -> str:
print(f"BasicCodeAgent received question (first 50 chars): {question[:50]}...")
fixed_answer = "This is a default answer."
#answer = self.agent.run(question)
print(f"BasicCodeAgent returning fixed answer: {fixed_answer}")
return answer
# def run_and_submit_all( profile: gr.OAuthProfile | None):
# """
# Fetches all questions, runs the BasicAgent on them, submits all answers,
# and displays the results.
# """
# # --- Determine HF Space Runtime URL and Repo URL ---
# space_id = os.getenv("/Synnove/Final_Assignment_Template") # Get the SPACE_ID for sending link to the code
# if profile:
# username= f"{profile.username}"
# print(f"User logged in: {username}")
# else:
# print("User not logged in.")
# return "Please Login to Hugging Face with the button.", None
# api_url = "https://agents-course-unit4-scoring.hf.space"
# questions_url = f"{api_url}/questions"
# submit_url = f"{api_url}/submit"
# # 1. Instantiate Agent ( modify this part to create your agent)
# try:
# #agent = BasicAgent()
# agent = BasicCodeAgent()
# except Exception as e:
# print(f"Error instantiating agent: {e}")
# return f"Error initializing agent: {e}", None
# # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
# agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
# print(agent_code)
# # 2. Fetch Questions
# print(f"Fetching questions from: {questions_url}")
# try:
# response = requests.get(questions_url, timeout=15)
# response.raise_for_status()
# questions_data = response.json()
# if not questions_data:
# print("Fetched questions list is empty.")
# return "Fetched questions list is empty or invalid format.", None
# print(f"Fetched {len(questions_data)} questions.")
# except requests.exceptions.RequestException as e:
# print(f"Error fetching questions: {e}")
# return f"Error fetching questions: {e}", None
# except requests.exceptions.JSONDecodeError as e:
# print(f"Error decoding JSON response from questions endpoint: {e}")
# print(f"Response text: {response.text[:500]}")
# return f"Error decoding server response for questions: {e}", None
# except Exception as e:
# print(f"An unexpected error occurred fetching questions: {e}")
# return f"An unexpected error occurred fetching questions: {e}", None
# # 3. Run your Agent
# results_log = []
# answers_payload = []
# print(f"Running agent on {len(questions_data)} questions...")
# print(questions_data)
# for item in questions_data:
# task_id = item.get("task_id")
# question_text = item.get("question")
# if not task_id or question_text is None:
# print(f"Skipping item with missing task_id or question: {item}")
# continue
# try:
# submitted_answer = agent(question_text)
# answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# except Exception as e:
# print(f"Error running agent on task {task_id}: {e}")
# results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
# if not answers_payload:
# print("Agent did not produce any answers to submit.")
# return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# # 4. Prepare Submission
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
# print(status_update)
# # 5. Submit
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
# try:
# response = requests.post(submit_url, json=submission_data, timeout=60)
# response.raise_for_status()
# result_data = response.json()
# final_status = (
# f"Submission Successful!\n"
# f"User: {result_data.get('username')}\n"
# f"Overall Score: {result_data.get('score', 'N/A')}% "
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
# f"Message: {result_data.get('message', 'No message received.')}"
# )
# print("Submission successful.")
# results_df = pd.DataFrame(results_log)
# return final_status, results_df
# except requests.exceptions.HTTPError as e:
# error_detail = f"Server responded with status {e.response.status_code}."
# try:
# error_json = e.response.json()
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
# except requests.exceptions.JSONDecodeError:
# error_detail += f" Response: {e.response.text[:500]}"
# status_message = f"Submission Failed: {error_detail}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except requests.exceptions.Timeout:
# status_message = "Submission Failed: The request timed out."
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except requests.exceptions.RequestException as e:
# status_message = f"Submission Failed: Network error - {e}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# except run_and_submit_allxception as e:
# status_message = f"An unexpected error occurred during submission: {e}"
# print(status_message)
# results_df = pd.DataFrame(results_log)
# return status_message, results_df
# # --- Build Gradio Interface using Blocks ---
# with gr.Blocks() as demo:
# gr.Markdown("# Basic Agent Evaluation Runner")
# gr.Markdown(
# """
# **Instructions:**
# 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
# 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
# 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
# ---
# **Disclaimers:**
# Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
# This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
# """
# )
# gr.LoginButton()
# run_button = gr.Button("Run Evaluation & Submit All Answers")
# status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# # Removed max_rows=10 from DataFrame constructor
# results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
# run_button.click(
# fn=run_and_submit_all,
# outputs=[status_output, results_table]
# )
# if __name__ == "__main__":
# print("\n" + "-"*30 + " App Starting " + "-"*30)
# # Check for SPACE_HOST and SPACE_ID at startup for information
# space_host_startup = os.getenv("SPACE_HOST")
# space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
# if space_host_startup:
# print(f"✅ SPACE_HOST found: {space_host_startup}")
# print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
# else:
# print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
# if space_id_startup: # Print repo URLs if SPACE_ID is found
# print(f"✅ SPACE_ID found: {space_id_startup}")
# print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
# print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
# else:
# print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
# print("-"*(60 + len(" App Starting ")) + "\n")
# print("Launching Gradio Interface for Basic Agent Evaluation...")
# demo.launch(debug=True, share=False) |