Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,119 +1,94 @@
|
|
1 |
-
import os
|
2 |
import cv2
|
3 |
-
import
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
|
|
|
|
7 |
import gradio as gr
|
8 |
-
from googleapiclient.discovery import build
|
9 |
-
from googleapiclient.http import MediaIoBaseDownload, MediaFileUpload
|
10 |
-
from io import BytesIO
|
11 |
-
|
12 |
-
# === CONFIGURATION ===
|
13 |
-
CCTVFEED_IDS = ['1KJRkSf2SKEZ1mXS9_si65IwMBtjs6p4n']
|
14 |
-
REG_FOLDER_ID = '1qkcR7nQTEtiMH9OFUv2bGxVn08E3dKjF'
|
15 |
-
INTRUDER_FOLDER_ID = '1PPAUWU-wMx7fek73p-hqPqYQypYtG8Ob'
|
16 |
-
TOKEN_PICKLE = 'token.pickle'
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
return build('drive', 'v3', credentials=creds)
|
22 |
|
23 |
-
def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
def
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
for f in files:
|
43 |
-
fname = f"{f['id']}.jpg"
|
44 |
-
download_file(service, f['id'], fname)
|
45 |
-
image = face_recognition.load_image_file(fname)
|
46 |
-
encodings = face_recognition.face_encodings(image)
|
47 |
-
if encodings:
|
48 |
-
known_encodings.append(encodings[0])
|
49 |
-
os.remove(fname)
|
50 |
-
return known_encodings
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
media = MediaFileUpload(img_path, mimetype='image/jpeg')
|
55 |
-
service.files().create(body=file_metadata, media_body=media, fields='id').execute()
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
break
|
70 |
-
if frame_count % 30 == 0:
|
71 |
-
rgb = frame[:, :, ::-1]
|
72 |
-
locations = face_recognition.face_locations(rgb)
|
73 |
-
encodings = face_recognition.face_encodings(rgb, locations)
|
74 |
-
print(f"[FRAME {frame_count}] Found {len(encodings)} face(s).")
|
75 |
-
for encoding in encodings:
|
76 |
-
if not is_match(encoding, known_encodings):
|
77 |
-
ts = int(time.time())
|
78 |
-
fname = f"intruder_{ts}_{frame_count}.jpg"
|
79 |
-
cv2.imwrite(fname, frame)
|
80 |
-
upload_intruder(service, fname)
|
81 |
-
uploaded.append(fname)
|
82 |
-
os.remove(fname)
|
83 |
-
detections += 1
|
84 |
-
frame_count += 1
|
85 |
|
86 |
cap.release()
|
87 |
-
|
88 |
-
return detections, uploaded
|
89 |
|
90 |
-
def
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
videos = list_files(service, folder_id)
|
98 |
-
total_videos += len(videos)
|
99 |
-
print(f"[INFO] Found {len(videos)} video(s) in {folder_id}.")
|
100 |
-
for v in videos:
|
101 |
-
path = f"{v['id']}.mp4"
|
102 |
-
download_file(service, v['id'], path)
|
103 |
-
detected, found = process_video(path, known_encodings, service)
|
104 |
-
total_detected += detected
|
105 |
-
intruder_imgs.extend(found)
|
106 |
-
os.remove(path)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
inputs=[],
|
116 |
-
outputs=["text", "gallery"],
|
117 |
-
title="CCTV Intruder Detector (GPU Ready)",
|
118 |
-
description="Detects intruders by comparing faces in CCTV footage with registered staff/guest photos."
|
119 |
-
).launch()
|
|
|
|
|
1 |
import cv2
|
2 |
+
import mediapipe as mp
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
import shutil
|
6 |
+
import requests
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# MediaPipe setup
|
11 |
+
mp_face_detection = mp.solutions.face_detection
|
12 |
+
mp_drawing = mp.solutions.drawing_utils
|
|
|
13 |
|
14 |
+
def download_public_gdrive_file(file_id, save_dir):
|
15 |
+
try:
|
16 |
+
url = f"https://drive.google.com/uc?id={file_id}&export=download"
|
17 |
+
response = requests.get(url, stream=True)
|
18 |
+
if response.status_code == 200:
|
19 |
+
ext = ".avi" if "avi" in response.headers.get('Content-Disposition', '') else ".mp4"
|
20 |
+
output_path = os.path.join(save_dir, f"{file_id}{ext}")
|
21 |
+
with open(output_path, 'wb') as f:
|
22 |
+
f.write(response.content)
|
23 |
+
return output_path
|
24 |
+
except Exception as e:
|
25 |
+
print(f"Error downloading {file_id}: {e}")
|
26 |
+
return None
|
27 |
|
28 |
+
def get_video_ids_from_folder(folder_url):
|
29 |
+
response = requests.get(folder_url)
|
30 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
31 |
+
video_ids = []
|
32 |
+
for link in soup.find_all("a"):
|
33 |
+
href = link.get("href", "")
|
34 |
+
if "/file/d/" in href:
|
35 |
+
video_id = href.split("/file/d/")[1].split("/")[0]
|
36 |
+
video_ids.append(video_id)
|
37 |
+
return list(set(video_ids))
|
38 |
|
39 |
+
def detect_faces_from_video(video_path):
|
40 |
+
face_count = 0
|
41 |
+
temp_dir = tempfile.mkdtemp()
|
42 |
+
frames_with_faces = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
cap = cv2.VideoCapture(video_path)
|
45 |
+
frame_index = 0
|
|
|
|
|
46 |
|
47 |
+
with mp_face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5) as detector:
|
48 |
+
while cap.isOpened():
|
49 |
+
ret, frame = cap.read()
|
50 |
+
if not ret:
|
51 |
+
break
|
52 |
+
frame_index += 1
|
53 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
54 |
+
results = detector.process(rgb_frame)
|
55 |
|
56 |
+
if results.detections:
|
57 |
+
face_count += len(results.detections)
|
58 |
+
for detection in results.detections:
|
59 |
+
mp_drawing.draw_detection(frame, detection)
|
60 |
|
61 |
+
frame_path = os.path.join(temp_dir, f"frame_{frame_index}.jpg")
|
62 |
+
cv2.imwrite(frame_path, frame)
|
63 |
+
frames_with_faces.append(frame_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
cap.release()
|
66 |
+
return frames_with_faces, face_count
|
|
|
67 |
|
68 |
+
def run_on_drive_folder(folder_url):
|
69 |
+
folder_url = folder_url.strip()
|
70 |
+
video_ids = get_video_ids_from_folder(folder_url)
|
71 |
+
if not video_ids:
|
72 |
+
return "❌ No videos found or access denied.", []
|
73 |
+
|
74 |
+
frames_all = []
|
75 |
+
total_faces = 0
|
76 |
+
for vid_id in video_ids[:5]: # Limit to 5 videos to manage processing time
|
77 |
+
video_path = download_public_gdrive_file(vid_id, "/tmp")
|
78 |
+
if video_path:
|
79 |
+
frames, count = detect_faces_from_video(video_path)
|
80 |
+
frames_all.extend(frames)
|
81 |
+
total_faces += count
|
82 |
|
83 |
+
return f"✅ Detected {total_faces} face(s) across {len(frames_all)} frame(s) from {len(video_ids)} video(s).", frames_all
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
demo = gr.Interface(
|
86 |
+
fn=run_on_drive_folder,
|
87 |
+
inputs=gr.Textbox(label="Google Drive Folder URL (Public)"),
|
88 |
+
outputs=[gr.Textbox(label="Summary"), gr.Gallery(label="Detected Frames")],
|
89 |
+
title="Intruder Detection from Google Drive Folder (MP4 + AVI)",
|
90 |
+
description="Paste the link to a *public* Google Drive folder containing .mp4 or .avi videos."
|
91 |
+
)
|
92 |
|
93 |
+
if __name__ == "__main__":
|
94 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|