Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,80 @@
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
3 |
-
import requests
|
4 |
import numpy as np
|
|
|
5 |
import tempfile
|
6 |
-
import time
|
7 |
import mediapipe as mp
|
|
|
8 |
|
9 |
# === CONFIGURATION ===
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
# ===
|
14 |
mp_face_detection = mp.solutions.face_detection
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
for
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
frame_display = st.empty()
|
48 |
-
stats_display = st.empty()
|
49 |
|
50 |
while cap.isOpened():
|
51 |
ret, frame = cap.read()
|
52 |
if not ret:
|
53 |
break
|
54 |
-
|
55 |
-
|
56 |
-
# Convert BGR to RGB
|
57 |
-
image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
58 |
-
results = face_detection.process(image_rgb)
|
59 |
-
|
60 |
-
# Draw faces
|
61 |
if results.detections:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
x, y, w, h = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih)
|
66 |
-
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
|
67 |
-
face_count += 1
|
68 |
-
|
69 |
-
# Resize for display
|
70 |
-
display_frame = cv2.resize(frame, (640, 360))
|
71 |
-
frame_display.image(display_frame, channels="BGR")
|
72 |
-
|
73 |
-
stats_display.markdown(f"**Frames Processed:** {frame_count} | **Faces Detected So Far:** {face_count}")
|
74 |
-
time.sleep(1 / 24.0) # Approx. 24 FPS
|
75 |
-
|
76 |
cap.release()
|
77 |
-
|
78 |
-
|
79 |
-
# ===
|
80 |
-
|
81 |
-
st.
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import cv2
|
|
|
3 |
import numpy as np
|
4 |
+
import requests
|
5 |
import tempfile
|
|
|
6 |
import mediapipe as mp
|
7 |
+
import os
|
8 |
|
9 |
# === CONFIGURATION ===
|
10 |
+
API_KEY = "AIzaSy...your_public_API_key..." # Replace with a valid public API key if needed
|
11 |
+
CCTVFEED_IDS = ['1KJRkSf2SKEZ1mXS9_si65IwMBtjs6p4n']
|
12 |
+
REG_FOLDER_ID = '1qkcR7nQTEtiMH9OFUv2bGxVn08E3dKjF'
|
13 |
+
INTRUDER_FOLDER_ID = '1PPAUWU-wMx7fek73p-hqPqYQypYtG8Ob'
|
14 |
|
15 |
+
# === SETUP ===
|
16 |
mp_face_detection = mp.solutions.face_detection
|
17 |
+
mp_drawing = mp.solutions.drawing_utils
|
18 |
+
face_detector = mp_face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5)
|
19 |
+
|
20 |
+
# === FUNCTIONS ===
|
21 |
+
def get_drive_video_links(folder_id):
|
22 |
+
api_url = f"https://www.googleapis.com/drive/v3/files?q='{folder_id}'+in+parents&key={API_KEY}&fields=files(id,name,mimeType)"
|
23 |
+
response = requests.get(api_url)
|
24 |
+
files = response.json().get("files", [])
|
25 |
+
|
26 |
+
st.write(f"π Found {len(files)} files in folder `{folder_id}`")
|
27 |
+
for f in files:
|
28 |
+
st.write(f" - **{f['name']}** | `{f['mimeType']}`")
|
29 |
+
|
30 |
+
video_links = []
|
31 |
+
for f in files:
|
32 |
+
if f["mimeType"] in ["video/mp4", "video/x-msvideo", "video/avi"]:
|
33 |
+
link = f"https://drive.google.com/uc?id={f['id']}&export=download"
|
34 |
+
video_links.append((f["name"], link))
|
35 |
+
return video_links
|
36 |
+
|
37 |
+
def download_video(link):
|
38 |
+
response = requests.get(link, stream=True)
|
39 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
40 |
+
for chunk in response.iter_content(chunk_size=1024*1024):
|
41 |
+
temp.write(chunk)
|
42 |
+
temp.close()
|
43 |
+
return temp.name
|
44 |
+
|
45 |
+
def detect_faces_from_video(video_path):
|
46 |
+
cap = cv2.VideoCapture(video_path)
|
47 |
+
frames_with_faces = 0
|
|
|
|
|
|
|
48 |
|
49 |
while cap.isOpened():
|
50 |
ret, frame = cap.read()
|
51 |
if not ret:
|
52 |
break
|
53 |
+
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
54 |
+
results = face_detector.process(rgb)
|
|
|
|
|
|
|
|
|
|
|
55 |
if results.detections:
|
56 |
+
frames_with_faces += 1
|
57 |
+
for det in results.detections:
|
58 |
+
mp_drawing.draw_detection(frame, det)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
cap.release()
|
60 |
+
return frames_with_faces
|
61 |
+
|
62 |
+
# === STREAMLIT UI ===
|
63 |
+
st.title("π Intruder Detection from CCTV Feed")
|
64 |
+
st.write("Streaming videos from Google Drive, detecting faces using MediaPipe.")
|
65 |
+
|
66 |
+
with st.spinner("Fetching videos..."):
|
67 |
+
total_detections = 0
|
68 |
+
for folder_id in CCTVFEED_IDS:
|
69 |
+
videos = get_drive_video_links(folder_id)
|
70 |
+
for vname, link in videos:
|
71 |
+
st.subheader(f"π₯ {vname}")
|
72 |
+
video_file = download_video(link)
|
73 |
+
faces = detect_faces_from_video(video_file)
|
74 |
+
os.remove(video_file)
|
75 |
+
if faces > 0:
|
76 |
+
st.success(f"β
Detected faces in {faces} frames.")
|
77 |
+
total_detections += 1
|
78 |
+
else:
|
79 |
+
st.warning("β οΈ No faces detected.")
|
80 |
+
st.info(f"π Completed. Videos with detected faces: {total_detections}")
|