Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,72 +1,58 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
from zonos.model import Zonos
|
4 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
device = "cuda" # zerogpu maps this transparently
|
26 |
-
MODEL_NAME = "Zyphra/Zonos-v0.1-transformer" # hybrid commented out for now
|
27 |
-
|
28 |
-
_cached_model: Zonos | None = None
|
29 |
-
def get_model() -> Zonos:
|
30 |
-
global _cached_model
|
31 |
-
if _cached_model is None:
|
32 |
-
_cached_model = Zonos.from_pretrained(MODEL_NAME, device=device).eval()
|
33 |
-
return _cached_model
|
34 |
-
|
35 |
-
def _speaker_embed(audio):
|
36 |
-
if audio is None: return None
|
37 |
-
sr, wav = audio
|
38 |
-
if wav.dtype.kind in "iu": wav = wav.astype(np.float32) / np.iinfo(wav.dtype).max
|
39 |
-
wav = torch.from_numpy(wav).unsqueeze(0)
|
40 |
-
return get_model().make_speaker_embedding(wav, sr)
|
41 |
-
|
42 |
-
@spaces.GPU
|
43 |
-
def tts(text, language, speaker_audio,
|
44 |
-
e1,e2,e3,e4,e5,e6,e7,e8, speaking_rate, pitch_std):
|
45 |
-
m = get_model()
|
46 |
-
speaker = _speaker_embed(speaker_audio)
|
47 |
-
emotion = [e1,e2,e3,e4,e5,e6,e7,e8]
|
48 |
-
cond = make_cond_dict(
|
49 |
-
text=text, language=language, speaker=speaker, emotion=emotion,
|
50 |
-
speaking_rate=float(speaking_rate), pitch_std=float(pitch_std), device=device
|
51 |
-
)
|
52 |
with torch.no_grad():
|
53 |
-
codes
|
54 |
-
wav
|
55 |
-
return (
|
56 |
-
|
57 |
-
langs = supported_language_codes # from the library itself
|
58 |
|
|
|
59 |
with gr.Blocks() as demo:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
rate
|
67 |
-
|
68 |
-
out
|
69 |
-
gr.Button("generate").click(tts,[txt,lng,
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
demo.launch()
|
|
|
1 |
+
import os, shlex, subprocess, torch
|
2 |
+
|
3 |
+
# extra wheels (safe to skip if they fail)
|
4 |
+
for cmd, env in [
|
5 |
+
("pip install flash-attn --no-build-isolation", {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}),
|
6 |
+
("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl", {}),
|
7 |
+
("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl", {}),
|
8 |
+
]:
|
9 |
+
try: subprocess.run(shlex.split(cmd), env=os.environ | env, check=True)
|
10 |
+
except subprocess.CalledProcessError: pass
|
11 |
+
|
12 |
+
# hard-nuke torch.compile everywhere
|
13 |
+
os.environ["TORCH_COMPILE_DISABLE"]="1"
|
14 |
+
os.environ["TORCHINDUCTOR_DISABLE"]="1"
|
15 |
+
torch._dynamo.disable()
|
16 |
+
torch.compile=lambda fn,*a,**k:fn
|
17 |
+
|
18 |
+
import torchaudio, gradio as gr, spaces, numpy as np
|
19 |
from zonos.model import Zonos
|
20 |
from zonos.conditioning import make_cond_dict, supported_language_codes
|
21 |
|
22 |
+
device="cuda"
|
23 |
+
MODEL_NAMES=["Zyphra/Zonos-v0.1-transformer","Zyphra/Zonos-v0.1-hybrid"]
|
24 |
+
MODELS={n:Zonos.from_pretrained(n,device=device).eval() for n in MODEL_NAMES}
|
25 |
+
|
26 |
+
def _spk(model,aud):
|
27 |
+
if aud is None: return None
|
28 |
+
sr,wav=aud
|
29 |
+
if wav.dtype.kind in "iu": wav=wav.astype(np.float32)/np.iinfo(wav.dtype).max
|
30 |
+
return model.make_speaker_embedding(torch.from_numpy(wav).unsqueeze(0),sr)
|
31 |
+
|
32 |
+
@spaces.GPU(duration=120)
|
33 |
+
def tts(m,text,lang,speaker,
|
34 |
+
h,sad,disg,fear,sur,ang,oth,neu,
|
35 |
+
speak,pitch):
|
36 |
+
model=MODELS[m]
|
37 |
+
emotion=[h,sad,disg,fear,sur,ang,oth,neu]
|
38 |
+
cond=make_cond_dict(text=text,language=lang,speaker=_spk(model,speaker),
|
39 |
+
emotion=emotion,speaking_rate=float(speak),
|
40 |
+
pitch_std=float(pitch),device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
+
codes=model.generate(model.prepare_conditioning(cond))
|
43 |
+
wav=model.autoencoder.decode(codes)[0].cpu()
|
44 |
+
return (model.autoencoder.sampling_rate,wav.numpy())
|
|
|
|
|
45 |
|
46 |
+
langs=supported_language_codes
|
47 |
with gr.Blocks() as demo:
|
48 |
+
mc=gr.Dropdown(MODEL_NAMES,value=MODEL_NAMES[0],label="model")
|
49 |
+
txt=gr.Textbox(label="text")
|
50 |
+
lng=gr.Dropdown(langs,value="en-us",label="language")
|
51 |
+
spk=gr.Audio(type="numpy",label="speaker ref")
|
52 |
+
emos=[gr.Slider(0,1,0.3 if i==0 else 0.0,0.05,label=l) for i,l in
|
53 |
+
enumerate(["happiness","sad","disgust","fear","surprise","anger","other","neutral"])]
|
54 |
+
rate=gr.Slider(0,40,15,1,label="speaking_rate")
|
55 |
+
pit=gr.Slider(0,400,20,1,label="pitch_std")
|
56 |
+
out=gr.Audio(label="output")
|
57 |
+
gr.Button("generate").click(tts,[mc,txt,lng,spk,*emos,rate,pit],out)
|
58 |
+
if __name__=="__main__": demo.launch()
|
|
|
|