Spaces:
Sleeping
Sleeping
Upload simple_app.py
Browse files- simple_app.py +367 -54
simple_app.py
CHANGED
@@ -6,6 +6,8 @@ import logging
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import shutil
|
|
|
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
# Try to import ReportLab (needed for PDF generation)
|
@@ -28,10 +30,14 @@ AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "")
|
|
28 |
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
|
29 |
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
|
30 |
|
31 |
-
# Initialize
|
32 |
bedrock_client = None
|
|
|
|
|
|
|
33 |
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
34 |
try:
|
|
|
35 |
bedrock_client = boto3.client(
|
36 |
'bedrock-runtime',
|
37 |
aws_access_key_id=AWS_ACCESS_KEY,
|
@@ -39,26 +45,52 @@ if AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
|
39 |
region_name=AWS_REGION
|
40 |
)
|
41 |
logger.info("Bedrock client initialized successfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
except Exception as e:
|
43 |
-
logger.error(f"Failed to initialize
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# Create data directories if they don't exist
|
46 |
DATA_DIR = os.environ.get("DATA_DIR", "patient_data")
|
47 |
DOWNLOADS_DIR = os.path.join(DATA_DIR, "downloads")
|
|
|
48 |
|
49 |
def ensure_data_dirs():
|
50 |
"""Ensure data directories exist"""
|
|
|
51 |
try:
|
52 |
os.makedirs(DATA_DIR, exist_ok=True)
|
53 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
54 |
-
|
|
|
55 |
except Exception as e:
|
56 |
logger.warning(f"Could not create data directories: {str(e)}")
|
57 |
# Fallback to tmp directory on HF Spaces
|
58 |
-
global DOWNLOADS_DIR
|
59 |
DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
|
|
|
60 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
61 |
-
|
|
|
62 |
|
63 |
# Initialize data directories
|
64 |
ensure_data_dirs()
|
@@ -148,11 +180,216 @@ def call_bedrock(prompt, max_tokens=4096):
|
|
148 |
logger.error(f"Error in call_bedrock: {str(e)}")
|
149 |
return f"Error: {str(e)}"
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
def generate_demo_response(prompt):
|
152 |
-
"""Generate a
|
153 |
-
# This function
|
154 |
-
#
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
return """<SPEECH_FACTORS_START>
|
157 |
Difficulty producing fluent speech: 8, 65
|
158 |
Examples:
|
@@ -508,6 +745,8 @@ def analyze_transcript(transcript, age, gender):
|
|
508 |
|
509 |
def export_pdf(results, patient_name="", record_id="", age="", gender="", assessment_date="", clinician=""):
|
510 |
"""Export analysis results to a PDF report"""
|
|
|
|
|
511 |
# Check if ReportLab is available
|
512 |
if not REPORTLAB_AVAILABLE:
|
513 |
return "ERROR: PDF export is not available - ReportLab library is not installed. Please run 'pip install reportlab'."
|
@@ -525,7 +764,6 @@ def export_pdf(results, patient_name="", record_id="", age="", gender="", assess
|
|
525 |
except Exception as e:
|
526 |
logger.warning(f"Could not access downloads directory: {str(e)}")
|
527 |
# Fallback to temp directory
|
528 |
-
global DOWNLOADS_DIR
|
529 |
DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
|
530 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
531 |
|
@@ -703,51 +941,88 @@ def create_interface():
|
|
703 |
|
704 |
with gr.Blocks(title="Simple CASL Analysis Tool", theme=theme) as app:
|
705 |
gr.Markdown("# CASL Analysis Tool")
|
706 |
-
gr.Markdown("A simplified tool for analyzing speech transcripts using CASL framework")
|
707 |
-
|
708 |
-
with gr.
|
709 |
-
|
710 |
-
|
711 |
-
gr.Markdown("### Patient Information")
|
712 |
-
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
713 |
-
record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
|
714 |
-
|
715 |
with gr.Row():
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
751 |
|
752 |
# Load sample transcript button
|
753 |
def load_sample():
|
@@ -865,6 +1140,43 @@ def create_interface():
|
|
865 |
],
|
866 |
outputs=[export_status]
|
867 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
|
869 |
return app
|
870 |
|
@@ -876,7 +1188,8 @@ def create_requirements_file():
|
|
876 |
"numpy",
|
877 |
"Pillow",
|
878 |
"reportlab>=3.6.0", # Required for PDF exports
|
879 |
-
"boto3"
|
|
|
880 |
]
|
881 |
|
882 |
with open("requirements.txt", "w") as f:
|
|
|
6 |
import os
|
7 |
import tempfile
|
8 |
import shutil
|
9 |
+
import time
|
10 |
+
import uuid
|
11 |
from datetime import datetime
|
12 |
|
13 |
# Try to import ReportLab (needed for PDF generation)
|
|
|
30 |
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
|
31 |
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
|
32 |
|
33 |
+
# Initialize AWS clients if credentials are available
|
34 |
bedrock_client = None
|
35 |
+
transcribe_client = None
|
36 |
+
s3_client = None
|
37 |
+
|
38 |
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
|
39 |
try:
|
40 |
+
# Initialize Bedrock client for AI analysis
|
41 |
bedrock_client = boto3.client(
|
42 |
'bedrock-runtime',
|
43 |
aws_access_key_id=AWS_ACCESS_KEY,
|
|
|
45 |
region_name=AWS_REGION
|
46 |
)
|
47 |
logger.info("Bedrock client initialized successfully")
|
48 |
+
|
49 |
+
# Initialize Transcribe client for speech-to-text
|
50 |
+
transcribe_client = boto3.client(
|
51 |
+
'transcribe',
|
52 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
53 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
54 |
+
region_name=AWS_REGION
|
55 |
+
)
|
56 |
+
logger.info("Transcribe client initialized successfully")
|
57 |
+
|
58 |
+
# Initialize S3 client for storing audio files
|
59 |
+
s3_client = boto3.client(
|
60 |
+
's3',
|
61 |
+
aws_access_key_id=AWS_ACCESS_KEY,
|
62 |
+
aws_secret_access_key=AWS_SECRET_KEY,
|
63 |
+
region_name=AWS_REGION
|
64 |
+
)
|
65 |
+
logger.info("S3 client initialized successfully")
|
66 |
except Exception as e:
|
67 |
+
logger.error(f"Failed to initialize AWS clients: {str(e)}")
|
68 |
+
|
69 |
+
# S3 bucket for storing audio files
|
70 |
+
S3_BUCKET = os.environ.get("S3_BUCKET", "casl-audio-files")
|
71 |
+
S3_PREFIX = "transcribe-audio/"
|
72 |
|
73 |
# Create data directories if they don't exist
|
74 |
DATA_DIR = os.environ.get("DATA_DIR", "patient_data")
|
75 |
DOWNLOADS_DIR = os.path.join(DATA_DIR, "downloads")
|
76 |
+
AUDIO_DIR = os.path.join(DATA_DIR, "audio")
|
77 |
|
78 |
def ensure_data_dirs():
|
79 |
"""Ensure data directories exist"""
|
80 |
+
global DOWNLOADS_DIR, AUDIO_DIR
|
81 |
try:
|
82 |
os.makedirs(DATA_DIR, exist_ok=True)
|
83 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
84 |
+
os.makedirs(AUDIO_DIR, exist_ok=True)
|
85 |
+
logger.info(f"Data directories created: {DATA_DIR}, {DOWNLOADS_DIR}, {AUDIO_DIR}")
|
86 |
except Exception as e:
|
87 |
logger.warning(f"Could not create data directories: {str(e)}")
|
88 |
# Fallback to tmp directory on HF Spaces
|
|
|
89 |
DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
|
90 |
+
AUDIO_DIR = os.path.join(tempfile.gettempdir(), "casl_audio")
|
91 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
92 |
+
os.makedirs(AUDIO_DIR, exist_ok=True)
|
93 |
+
logger.info(f"Using fallback directories: {DOWNLOADS_DIR}, {AUDIO_DIR}")
|
94 |
|
95 |
# Initialize data directories
|
96 |
ensure_data_dirs()
|
|
|
180 |
logger.error(f"Error in call_bedrock: {str(e)}")
|
181 |
return f"Error: {str(e)}"
|
182 |
|
183 |
+
def transcribe_audio(audio_path, patient_age=8):
|
184 |
+
"""Transcribe an audio recording using Amazon Transcribe and format in CHAT format"""
|
185 |
+
if not os.path.exists(audio_path):
|
186 |
+
logger.error(f"Audio file not found: {audio_path}")
|
187 |
+
return "Error: Audio file not found."
|
188 |
+
|
189 |
+
if not transcribe_client or not s3_client:
|
190 |
+
logger.warning("AWS clients not initialized, using demo transcription")
|
191 |
+
return generate_demo_transcription()
|
192 |
+
|
193 |
+
try:
|
194 |
+
# Get file info
|
195 |
+
file_name = os.path.basename(audio_path)
|
196 |
+
file_size = os.path.getsize(audio_path)
|
197 |
+
_, file_extension = os.path.splitext(file_name)
|
198 |
+
|
199 |
+
# Check file format
|
200 |
+
supported_formats = ['.mp3', '.mp4', '.wav', '.flac', '.ogg', '.amr', '.webm']
|
201 |
+
if file_extension.lower() not in supported_formats:
|
202 |
+
logger.error(f"Unsupported audio format: {file_extension}")
|
203 |
+
return f"Error: Unsupported audio format. Please use one of: {', '.join(supported_formats)}"
|
204 |
+
|
205 |
+
# Generate a unique job name
|
206 |
+
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
|
207 |
+
job_name = f"casl-transcription-{timestamp}"
|
208 |
+
s3_key = f"{S3_PREFIX}{job_name}{file_extension}"
|
209 |
+
|
210 |
+
# Upload to S3
|
211 |
+
logger.info(f"Uploading {file_name} to S3 bucket {S3_BUCKET}")
|
212 |
+
try:
|
213 |
+
with open(audio_path, 'rb') as audio_file:
|
214 |
+
s3_client.upload_fileobj(audio_file, S3_BUCKET, s3_key)
|
215 |
+
except Exception as e:
|
216 |
+
logger.error(f"Failed to upload to S3: {str(e)}")
|
217 |
+
|
218 |
+
# If upload fails, try to create the bucket
|
219 |
+
try:
|
220 |
+
s3_client.create_bucket(Bucket=S3_BUCKET)
|
221 |
+
logger.info(f"Created S3 bucket: {S3_BUCKET}")
|
222 |
+
|
223 |
+
# Try upload again
|
224 |
+
with open(audio_path, 'rb') as audio_file:
|
225 |
+
s3_client.upload_fileobj(audio_file, S3_BUCKET, s3_key)
|
226 |
+
except Exception as bucket_error:
|
227 |
+
logger.error(f"Failed to create bucket and upload: {str(bucket_error)}")
|
228 |
+
return "Error: Failed to upload audio file. Please check your AWS permissions."
|
229 |
+
|
230 |
+
# Start transcription job
|
231 |
+
logger.info(f"Starting transcription job: {job_name}")
|
232 |
+
media_format = file_extension.lower()[1:] # Remove the dot
|
233 |
+
if media_format == 'webm':
|
234 |
+
media_format = 'webm' # Amazon Transcribe expects this
|
235 |
+
|
236 |
+
# Determine language settings based on patient age
|
237 |
+
if patient_age < 10:
|
238 |
+
# For younger children, enabling child language model is helpful
|
239 |
+
language_options = {
|
240 |
+
'LanguageCode': 'en-US',
|
241 |
+
'Settings': {
|
242 |
+
'LanguageModelName': 'ChildLanguage'
|
243 |
+
}
|
244 |
+
}
|
245 |
+
else:
|
246 |
+
language_options = {
|
247 |
+
'LanguageCode': 'en-US'
|
248 |
+
}
|
249 |
+
|
250 |
+
transcribe_client.start_transcription_job(
|
251 |
+
TranscriptionJobName=job_name,
|
252 |
+
Media={
|
253 |
+
'MediaFileUri': f"s3://{S3_BUCKET}/{s3_key}"
|
254 |
+
},
|
255 |
+
MediaFormat=media_format,
|
256 |
+
**language_options,
|
257 |
+
Settings={
|
258 |
+
'ShowSpeakerLabels': True,
|
259 |
+
'MaxSpeakerLabels': 2 # Typically patient + clinician
|
260 |
+
}
|
261 |
+
)
|
262 |
+
|
263 |
+
# Wait for the job to complete (with timeout)
|
264 |
+
logger.info("Waiting for transcription to complete...")
|
265 |
+
max_tries = 30 # 5 minutes max wait
|
266 |
+
tries = 0
|
267 |
+
|
268 |
+
while tries < max_tries:
|
269 |
+
try:
|
270 |
+
job = transcribe_client.get_transcription_job(TranscriptionJobName=job_name)
|
271 |
+
status = job['TranscriptionJob']['TranscriptionJobStatus']
|
272 |
+
|
273 |
+
if status == 'COMPLETED':
|
274 |
+
# Get the transcript
|
275 |
+
transcript_uri = job['TranscriptionJob']['Transcript']['TranscriptFileUri']
|
276 |
+
|
277 |
+
# Download the transcript
|
278 |
+
import urllib.request
|
279 |
+
import json
|
280 |
+
|
281 |
+
with urllib.request.urlopen(transcript_uri) as response:
|
282 |
+
transcript_json = json.loads(response.read().decode('utf-8'))
|
283 |
+
|
284 |
+
# Convert to CHAT format
|
285 |
+
chat_transcript = format_as_chat(transcript_json)
|
286 |
+
return chat_transcript
|
287 |
+
|
288 |
+
elif status == 'FAILED':
|
289 |
+
reason = job['TranscriptionJob'].get('FailureReason', 'Unknown failure')
|
290 |
+
logger.error(f"Transcription job failed: {reason}")
|
291 |
+
return f"Error: Transcription failed - {reason}"
|
292 |
+
|
293 |
+
# Still in progress, wait and try again
|
294 |
+
tries += 1
|
295 |
+
time.sleep(10) # Check every 10 seconds
|
296 |
+
|
297 |
+
except Exception as e:
|
298 |
+
logger.error(f"Error checking transcription job: {str(e)}")
|
299 |
+
return f"Error getting transcription: {str(e)}"
|
300 |
+
|
301 |
+
# If we got here, we timed out
|
302 |
+
return "Error: Transcription timed out. The process is taking longer than expected."
|
303 |
+
|
304 |
+
except Exception as e:
|
305 |
+
logger.exception("Error in audio transcription")
|
306 |
+
return f"Error transcribing audio: {str(e)}"
|
307 |
+
|
308 |
+
def format_as_chat(transcript_json):
|
309 |
+
"""Format the Amazon Transcribe JSON result as CHAT format"""
|
310 |
+
try:
|
311 |
+
# Get transcript items
|
312 |
+
items = transcript_json['results']['items']
|
313 |
+
|
314 |
+
# Get speaker labels if available
|
315 |
+
speakers = {}
|
316 |
+
if 'speaker_labels' in transcript_json['results']:
|
317 |
+
speaker_segments = transcript_json['results']['speaker_labels']['segments']
|
318 |
+
|
319 |
+
# Map each item to its speaker
|
320 |
+
for segment in speaker_segments:
|
321 |
+
for item in segment['items']:
|
322 |
+
start_time = item['start_time']
|
323 |
+
speakers[start_time] = segment['speaker_label']
|
324 |
+
|
325 |
+
# Build transcript by combining words into utterances by speaker
|
326 |
+
current_speaker = None
|
327 |
+
current_utterance = []
|
328 |
+
utterances = []
|
329 |
+
|
330 |
+
for item in items:
|
331 |
+
# Skip non-pronunciation items (like punctuation)
|
332 |
+
if item['type'] != 'pronunciation':
|
333 |
+
continue
|
334 |
+
|
335 |
+
word = item['alternatives'][0]['content']
|
336 |
+
start_time = item.get('start_time')
|
337 |
+
|
338 |
+
# Determine speaker if available
|
339 |
+
speaker = speakers.get(start_time, 'spk_0')
|
340 |
+
|
341 |
+
# If speaker changed, start a new utterance
|
342 |
+
if speaker != current_speaker and current_utterance:
|
343 |
+
utterances.append((current_speaker, ' '.join(current_utterance)))
|
344 |
+
current_utterance = []
|
345 |
+
|
346 |
+
current_speaker = speaker
|
347 |
+
current_utterance.append(word)
|
348 |
+
|
349 |
+
# Add the last utterance
|
350 |
+
if current_utterance:
|
351 |
+
utterances.append((current_speaker, ' '.join(current_utterance)))
|
352 |
+
|
353 |
+
# Format as CHAT
|
354 |
+
chat_lines = []
|
355 |
+
for speaker, text in utterances:
|
356 |
+
# Map speakers to CHAT format
|
357 |
+
# Assuming spk_0 is the patient (PAR) and spk_1 is the clinician (INV)
|
358 |
+
chat_speaker = "*PAR:" if speaker == "spk_0" else "*INV:"
|
359 |
+
chat_lines.append(f"{chat_speaker} {text}.")
|
360 |
+
|
361 |
+
return '\n'.join(chat_lines)
|
362 |
+
|
363 |
+
except Exception as e:
|
364 |
+
logger.exception("Error formatting transcript")
|
365 |
+
return "*PAR: (Error formatting transcript)"
|
366 |
+
|
367 |
+
def generate_demo_transcription():
|
368 |
+
"""Generate a simulated transcription response"""
|
369 |
+
return """*PAR: today I want to tell you about my favorite toy.
|
370 |
+
*PAR: it's a &-um teddy bear that I got for my birthday.
|
371 |
+
*PAR: he has &-um brown fur and a red bow.
|
372 |
+
*PAR: I like to sleep with him every night.
|
373 |
+
*PAR: sometimes I take him to school in my backpack.
|
374 |
+
*INV: what's your teddy bear's name?
|
375 |
+
*PAR: his name is &-um Brownie because he's brown."""
|
376 |
+
|
377 |
def generate_demo_response(prompt):
|
378 |
+
"""Generate a response using Bedrock if available, otherwise return a demo response"""
|
379 |
+
# This function will attempt to call Bedrock, and only fall back to the demo response
|
380 |
+
# if Bedrock is not available or fails
|
381 |
|
382 |
+
# Try to call Bedrock first if client is available
|
383 |
+
if bedrock_client:
|
384 |
+
try:
|
385 |
+
return call_bedrock(prompt)
|
386 |
+
except Exception as e:
|
387 |
+
logger.error(f"Error calling Bedrock: {str(e)}")
|
388 |
+
logger.info("Falling back to demo response")
|
389 |
+
# Continue to fallback response if Bedrock call fails
|
390 |
+
|
391 |
+
# Fallback demo response
|
392 |
+
logger.warning("Using demo response - Bedrock client not available or call failed")
|
393 |
return """<SPEECH_FACTORS_START>
|
394 |
Difficulty producing fluent speech: 8, 65
|
395 |
Examples:
|
|
|
745 |
|
746 |
def export_pdf(results, patient_name="", record_id="", age="", gender="", assessment_date="", clinician=""):
|
747 |
"""Export analysis results to a PDF report"""
|
748 |
+
global DOWNLOADS_DIR
|
749 |
+
|
750 |
# Check if ReportLab is available
|
751 |
if not REPORTLAB_AVAILABLE:
|
752 |
return "ERROR: PDF export is not available - ReportLab library is not installed. Please run 'pip install reportlab'."
|
|
|
764 |
except Exception as e:
|
765 |
logger.warning(f"Could not access downloads directory: {str(e)}")
|
766 |
# Fallback to temp directory
|
|
|
767 |
DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
|
768 |
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
|
769 |
|
|
|
941 |
|
942 |
with gr.Blocks(title="Simple CASL Analysis Tool", theme=theme) as app:
|
943 |
gr.Markdown("# CASL Analysis Tool")
|
944 |
+
gr.Markdown("A simplified tool for analyzing speech transcripts and audio using CASL framework")
|
945 |
+
|
946 |
+
with gr.Tabs() as main_tabs:
|
947 |
+
# Analysis Tab
|
948 |
+
with gr.TabItem("Analysis", id=0):
|
|
|
|
|
|
|
|
|
949 |
with gr.Row():
|
950 |
+
with gr.Column(scale=1):
|
951 |
+
# Patient info
|
952 |
+
gr.Markdown("### Patient Information")
|
953 |
+
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
|
954 |
+
record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
|
955 |
+
|
956 |
+
with gr.Row():
|
957 |
+
age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
|
958 |
+
gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
|
959 |
+
|
960 |
+
assessment_date = gr.Textbox(
|
961 |
+
label="Assessment Date",
|
962 |
+
placeholder="MM/DD/YYYY",
|
963 |
+
value=datetime.now().strftime('%m/%d/%Y')
|
964 |
+
)
|
965 |
+
clinician_name = gr.Textbox(label="Clinician", placeholder="Enter clinician name")
|
966 |
+
|
967 |
+
# Transcript input
|
968 |
+
gr.Markdown("### Transcript")
|
969 |
+
sample_btn = gr.Button("Load Sample Transcript")
|
970 |
+
file_upload = gr.File(label="Upload transcript file (.txt or .cha)")
|
971 |
+
transcript = gr.Textbox(
|
972 |
+
label="Speech transcript (CHAT format preferred)",
|
973 |
+
placeholder="Enter transcript text or upload a file...",
|
974 |
+
lines=10
|
975 |
+
)
|
976 |
+
|
977 |
+
# Analysis button
|
978 |
+
analyze_btn = gr.Button("Analyze Transcript", variant="primary")
|
979 |
+
|
980 |
+
with gr.Column(scale=1):
|
981 |
+
# Results display
|
982 |
+
gr.Markdown("### Analysis Results")
|
983 |
+
|
984 |
+
analysis_output = gr.Markdown(label="Full Analysis")
|
985 |
+
|
986 |
+
# PDF export (only shown if ReportLab is available)
|
987 |
+
export_status = gr.Markdown("")
|
988 |
+
if REPORTLAB_AVAILABLE:
|
989 |
+
export_btn = gr.Button("Export as PDF", variant="secondary")
|
990 |
+
else:
|
991 |
+
gr.Markdown("⚠️ PDF export is disabled - ReportLab library is not installed")
|
992 |
+
|
993 |
+
# Transcription Tab
|
994 |
+
with gr.TabItem("Transcription", id=1):
|
995 |
+
with gr.Row():
|
996 |
+
with gr.Column(scale=1):
|
997 |
+
gr.Markdown("### Audio Transcription")
|
998 |
+
gr.Markdown("Upload an audio recording to automatically transcribe it in CHAT format")
|
999 |
+
|
1000 |
+
# Patient's age helps with transcription accuracy
|
1001 |
+
transcription_age = gr.Number(label="Patient Age", value=8, minimum=1, maximum=120,
|
1002 |
+
info="For children under 10, special language models may be used")
|
1003 |
+
|
1004 |
+
# Audio input
|
1005 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio Recording",
|
1006 |
+
format="mp3,wav,ogg,webm",
|
1007 |
+
elem_id="audio-input")
|
1008 |
+
|
1009 |
+
# Transcribe button
|
1010 |
+
transcribe_btn = gr.Button("Transcribe Audio", variant="primary")
|
1011 |
+
|
1012 |
+
with gr.Column(scale=1):
|
1013 |
+
# Transcription output
|
1014 |
+
transcription_output = gr.Textbox(
|
1015 |
+
label="Transcription Result",
|
1016 |
+
placeholder="Transcription will appear here...",
|
1017 |
+
lines=12
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
with gr.Row():
|
1021 |
+
# Button to use transcription in analysis
|
1022 |
+
copy_to_analysis_btn = gr.Button("Use for Analysis", variant="secondary")
|
1023 |
+
|
1024 |
+
# Status/info message
|
1025 |
+
transcription_status = gr.Markdown("")
|
1026 |
|
1027 |
# Load sample transcript button
|
1028 |
def load_sample():
|
|
|
1140 |
],
|
1141 |
outputs=[export_status]
|
1142 |
)
|
1143 |
+
|
1144 |
+
# Transcription button handler
|
1145 |
+
def on_transcribe_audio(audio_path, age_val):
|
1146 |
+
try:
|
1147 |
+
if not audio_path:
|
1148 |
+
return "Please upload an audio file to transcribe.", "Error: No audio file provided."
|
1149 |
+
|
1150 |
+
# Process the audio file with Amazon Transcribe
|
1151 |
+
transcription = transcribe_audio(audio_path, age_val)
|
1152 |
+
|
1153 |
+
# Return status message based on whether it's a demo or real transcription
|
1154 |
+
if not transcribe_client:
|
1155 |
+
status_msg = "⚠️ Demo mode: Using example transcription (AWS credentials not configured)"
|
1156 |
+
else:
|
1157 |
+
status_msg = "✅ Transcription completed successfully"
|
1158 |
+
|
1159 |
+
return transcription, status_msg
|
1160 |
+
except Exception as e:
|
1161 |
+
logger.exception("Error transcribing audio")
|
1162 |
+
return f"Error: {str(e)}", f"❌ Transcription failed: {str(e)}"
|
1163 |
+
|
1164 |
+
# Connect the transcribe button to its handler
|
1165 |
+
transcribe_btn.click(
|
1166 |
+
on_transcribe_audio,
|
1167 |
+
inputs=[audio_input, transcription_age],
|
1168 |
+
outputs=[transcription_output, transcription_status]
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
# Copy transcription to analysis tab
|
1172 |
+
def copy_to_analysis(transcription):
|
1173 |
+
return transcription, gr.update(selected=0) # Switch to Analysis tab
|
1174 |
+
|
1175 |
+
copy_to_analysis_btn.click(
|
1176 |
+
copy_to_analysis,
|
1177 |
+
inputs=[transcription_output],
|
1178 |
+
outputs=[transcript, main_tabs]
|
1179 |
+
)
|
1180 |
|
1181 |
return app
|
1182 |
|
|
|
1188 |
"numpy",
|
1189 |
"Pillow",
|
1190 |
"reportlab>=3.6.0", # Required for PDF exports
|
1191 |
+
"boto3>=1.28.0", # Required for AWS services
|
1192 |
+
"botocore>=1.31.0" # Required for AWS services
|
1193 |
]
|
1194 |
|
1195 |
with open("requirements.txt", "w") as f:
|