Spaces:
Sleeping
Sleeping
File size: 55,084 Bytes
a9de5f0 29b30f3 d60565b a9de5f0 29b30f3 a9de5f0 d60565b 29b30f3 a9de5f0 d60565b 29b30f3 a9de5f0 d60565b a9de5f0 d60565b 29b30f3 d60565b a9de5f0 29b30f3 d60565b a9de5f0 d60565b a9de5f0 d0f2f4f e0eefc3 d0f2f4f e0eefc3 d23c5ad d60565b d76b08e d60565b d76b08e d23c5ad d76b08e d60565b d23c5ad d60565b d23c5ad d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d23c5ad d76b08e d23c5ad d76b08e d23c5ad d76b08e d23c5ad d60565b d76b08e d60565b d23c5ad d76b08e d23c5ad d76b08e d23c5ad d76b08e d23c5ad d60565b a9de5f0 d60565b a9de5f0 d60565b d76b08e a9de5f0 d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d76b08e d60565b d23c5ad d76b08e d60565b d23c5ad d76b08e d23c5ad d76b08e d23c5ad d60565b d76b08e d60565b d76b08e d23c5ad d76b08e d60565b d76b08e d60565b d76b08e d60565b d23c5ad d60565b a9de5f0 d76b08e d60565b d0f2f4f d60565b d76b08e d60565b d76b08e d60565b a9de5f0 d76b08e d60565b 29b30f3 a9de5f0 d60565b a9de5f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 |
import gradio as gr
import json
import os
import logging
import requests
import re
import tempfile
import numpy as np
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Anthropic API key - can be set as HuggingFace secret or environment variable
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "")
# Try to import transcription libraries
try:
from speechbrain.pretrained import EncoderDecoderASR
import torch
SPEECHBRAIN_AVAILABLE = True
logger.info("SpeechBrain available for transcription")
except ImportError as e:
logger.warning(f"SpeechBrain not available: {e}")
SPEECHBRAIN_AVAILABLE = False
# Try to import video processing
try:
import moviepy.editor as mp
MOVIEPY_AVAILABLE = True
logger.info("MoviePy available for video processing")
except ImportError as e:
logger.warning(f"MoviePy not available: {e}")
MOVIEPY_AVAILABLE = False
# Try to import speaker diarization
try:
from pyannote.audio import Pipeline
from pyannote.audio.pipelines.utils.hook import ProgressHook
DIARIZATION_AVAILABLE = True
logger.info("Pyannote.audio available for speaker diarization")
except ImportError as e:
logger.warning(f"Pyannote.audio not available: {e}")
DIARIZATION_AVAILABLE = False
# Try to import sentiment and emotion analysis
try:
from transformers import pipeline
SENTIMENT_AVAILABLE = True
logger.info("Transformers available for sentiment analysis")
except ImportError as e:
logger.warning(f"Transformers not available: {e}")
SENTIMENT_AVAILABLE = False
# Initialize models if available
asr_model = None
sentiment_model = None
emotion_model = None
diarization_pipeline = None
if SPEECHBRAIN_AVAILABLE:
try:
asr_model = EncoderDecoderASR.from_hparams(
source="speechbrain/asr-crdnn-rnnlm-librispeech",
savedir="pretrained_models/asr-crdnn-rnnlm-librispeech"
)
logger.info("ASR model loaded successfully")
except Exception as e:
logger.error(f"Error loading ASR model: {e}")
SPEECHBRAIN_AVAILABLE = False
if SENTIMENT_AVAILABLE:
try:
sentiment_model = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
top_k=None
)
emotion_model = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
top_k=None
)
logger.info("Sentiment and emotion models loaded")
except Exception as e:
logger.error(f"Error loading sentiment models: {e}")
SENTIMENT_AVAILABLE = False
if DIARIZATION_AVAILABLE:
try:
HF_TOKEN = os.getenv("HF_TOKEN", "")
if HF_TOKEN:
diarization_pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization@2.1",
use_auth_token=HF_TOKEN
)
logger.info("Speaker diarization pipeline loaded")
else:
logger.warning("HF_TOKEN not set - speaker diarization will be disabled")
except Exception as e:
logger.error(f"Error loading diarization pipeline: {e}")
# Check if API key is available
if ANTHROPIC_API_KEY:
logger.info("Claude API key found")
else:
logger.warning("Claude API key not found - using demo mode")
def validate_analysis_completeness(response_text):
"""Validate that all 12 sections are present in the analysis"""
required_sections = [
"1. SPEECH FACTORS",
"2. LANGUAGE SKILLS ASSESSMENT",
"3. COMPLEX SENTENCE ANALYSIS",
"4. FIGURATIVE LANGUAGE ANALYSIS",
"5. PRAGMATIC LANGUAGE ASSESSMENT",
"6. VOCABULARY AND SEMANTIC ANALYSIS",
"7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS",
"8. COGNITIVE-LINGUISTIC FACTORS",
"9. FLUENCY AND RHYTHM ANALYSIS",
"10. QUANTITATIVE METRICS",
"11. CLINICAL IMPLICATIONS",
"12. PROGNOSIS AND SUMMARY"
]
missing_sections = []
for section in required_sections:
if section not in response_text:
missing_sections.append(section)
if missing_sections:
print(f"\nβ οΈ MISSING SECTIONS: {missing_sections}")
return False
else:
print(f"\nβ
ALL 12 SECTIONS PRESENT")
return True
def call_claude_api_with_continuation(prompt, max_continuations=3):
"""Call Claude API with continuation prompting to ensure complete responses"""
if not ANTHROPIC_API_KEY:
return "β Claude API key not configured. Please set ANTHROPIC_API_KEY environment variable."
try:
full_response = ""
continuation_count = 0
# Add continuation instruction to original prompt
initial_prompt = prompt + "\n\nIMPORTANT: If your response is cut off or incomplete, end with <CONTINUE> to indicate more content is needed. Ensure you complete all sections of the analysis."
while continuation_count <= max_continuations:
if continuation_count == 0:
current_prompt = initial_prompt
else:
# For continuations, provide context about what was already covered
current_prompt = prompt + f"\n\nContinue from where you left off (continuation {continuation_count + 1} of {max_continuations}):\n\nIMPORTANT: Do not repeat what you've already written. Continue with the next section or complete any unfinished sections. If you're done, do not include <CONTINUE>. Provide the remaining analysis sections. Make sure to complete ALL 12 sections of the analysis."
headers = {
"Content-Type": "application/json",
"x-api-key": ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-3-5-sonnet-20241022",
"max_tokens": 4096,
"messages": [
{
"role": "user",
"content": current_prompt
}
]
}
response = requests.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=data,
timeout=90
)
if response.status_code == 200:
response_json = response.json()
response_text = response_json['content'][0]['text']
# Log response for debugging
print(f"\n=== PART {continuation_count + 1} RESPONSE ===")
print(f"Length: {len(response_text)} characters")
print(f"Contains CONTINUE: {'<CONTINUE>' in response_text}")
print(f"First 200 chars: {response_text[:200]}...")
print(f"Last 200 chars: {response_text[-200:]}...")
print("=" * 50)
# Simple string combination - no complex processing
if continuation_count == 0:
full_response = response_text
else:
# Just add a newline and append the continuation
full_response += "\n\n" + response_text
# Check if response indicates continuation is needed
needs_continuation = "<CONTINUE>" in response_text
print(f"Needs continuation: {needs_continuation}")
print(f"Continuation count: {continuation_count}/{max_continuations}")
# Continue if <CONTINUE> is present and we haven't reached max
if needs_continuation and continuation_count < max_continuations:
# Remove the CONTINUE marker
full_response = full_response.replace("<CONTINUE>", "")
continuation_count += 1
logger.info(f"Continuing analysis (attempt {continuation_count}/{max_continuations})")
continue
else:
# Clean up any remaining continuation markers
full_response = full_response.replace("<CONTINUE>", "")
break
else:
logger.error(f"Claude API error: {response.status_code} - {response.text}")
return f"β Claude API Error: {response.status_code}"
except Exception as e:
logger.error(f"Error calling Claude API: {str(e)}")
return f"β Error: {str(e)}"
# Add completion indicator
if continuation_count > 0:
full_response += f"\n\n[Analysis completed in {continuation_count + 1} parts]"
# Log final response for debugging
print(f"\n=== FINAL COMPLETE RESPONSE ===")
print(f"Total length: {len(full_response)} characters")
print(f"Number of parts: {continuation_count + 1}")
print("=" * 50)
# Print the entire final response for debugging
print(f"\n=== ENTIRE FINAL RESPONSE ===")
print(full_response)
print("=" * 50)
return full_response
def call_claude_api(prompt):
"""Call Claude API directly (legacy function for backward compatibility)"""
return call_claude_api_with_continuation(prompt, max_continuations=0)
def extract_audio_from_video(video_path):
"""Extract audio from video file"""
if not MOVIEPY_AVAILABLE:
return None, "MoviePy not available for video processing"
try:
temp_audio = tempfile.NamedTemporaryFile(suffix='.wav', delete=False)
temp_audio_path = temp_audio.name
temp_audio.close()
video = mp.VideoFileClip(video_path)
audio = video.audio
if audio is None:
return None, "No audio track found in video file"
audio.write_audiofile(temp_audio_path, verbose=False, logger=None)
video.close()
audio.close()
return temp_audio_path, "Audio extracted successfully"
except Exception as e:
logger.error(f"Error extracting audio: {e}")
return None, f"Error extracting audio: {str(e)}"
def perform_speaker_diarization(audio_path):
"""Perform speaker diarization on audio file"""
if not DIARIZATION_AVAILABLE or not diarization_pipeline:
return None, "Speaker diarization not available"
try:
with ProgressHook() as hook:
diarization = diarization_pipeline(audio_path, hook=hook)
speaker_segments = []
for turn, _, speaker in diarization.itertracks(yield_label=True):
speaker_segments.append({
'start': turn.start,
'end': turn.end,
'speaker': speaker,
'duration': turn.end - turn.start
})
logger.info(f"Diarization completed: {len(speaker_segments)} segments found")
return speaker_segments, "Diarization completed successfully"
except Exception as e:
logger.error(f"Error in diarization: {e}")
return None, f"Diarization error: {str(e)}"
def transcribe_audio_with_metadata(audio_file, enable_diarization=True):
"""Transcribe audio with timestamps, sentiment, and metadata"""
if not audio_file:
return None, "No audio file provided"
if not SPEECHBRAIN_AVAILABLE:
return None, "SpeechBrain not available for transcription"
try:
# Check if it's a video file
file_extension = os.path.splitext(audio_file)[1].lower()
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.wmv', '.flv']:
processed_audio, status = extract_audio_from_video(audio_file)
if not processed_audio:
return None, status
else:
processed_audio = audio_file
# Perform speaker diarization if enabled
speaker_segments = None
diarization_status = ""
if enable_diarization:
speaker_segments, diarization_status = perform_speaker_diarization(processed_audio)
# Get transcription
transcript = asr_model.transcribe_file(processed_audio)
# Clean up temporary file if created
if processed_audio != audio_file and os.path.exists(processed_audio):
try:
os.unlink(processed_audio)
except:
pass
# Split into sentences and add metadata
sentences = re.split(r'[.!?]+', transcript)
sentences = [s.strip() for s in sentences if s.strip()]
rich_transcript = []
current_time = 0
for i, sentence in enumerate(sentences):
timestamp = current_time + (i * 2)
# Determine speaker
speaker = "UNKNOWN"
if speaker_segments:
for segment in speaker_segments:
if segment['start'] <= timestamp <= segment['end']:
speaker = segment['speaker']
break
# Sentiment and emotion analysis
sentiment = {'label': 'neutral', 'score': 0.5}
emotion = {'label': 'neutral', 'score': 0.5}
if SENTIMENT_AVAILABLE:
try:
sentiment_result = sentiment_model(sentence)[0] if sentiment_model else None
sentiment = max(sentiment_result, key=lambda x: x['score']) if sentiment_result else sentiment
emotion_result = emotion_model(sentence)[0] if emotion_model else None
emotion = max(emotion_result, key=lambda x: x['score']) if emotion_result else emotion
except:
pass
# Word metrics
words = sentence.split()
word_count = len(words)
avg_word_length = np.mean([len(word) for word in words]) if words else 0
speech_rate = word_count * 30 / 60
rich_transcript.append({
'timestamp': timestamp,
'speaker': speaker,
'sentence': sentence,
'word_count': word_count,
'avg_word_length': round(avg_word_length, 2),
'speech_rate_wpm': round(speech_rate, 1),
'sentiment': sentiment['label'],
'sentiment_score': round(sentiment['score'], 3),
'emotion': emotion['label'],
'emotion_score': round(emotion['score'], 3)
})
current_time = timestamp
status_msg = f"Transcription completed successfully"
if diarization_status:
status_msg += f" {diarization_status}"
return rich_transcript, status_msg
except Exception as e:
logger.error(f"Error in transcription: {e}")
return None, f"Transcription error: {str(e)}"
def format_rich_transcript(rich_transcript):
"""Format rich transcript for display"""
if not rich_transcript:
return "No transcript data available"
formatted_lines = []
for entry in rich_transcript:
timestamp_str = f"{int(entry['timestamp']//60):02d}:{int(entry['timestamp']%60):02d}"
line = f"[{timestamp_str}] *{entry['speaker']}: {entry['sentence']}"
line += f" [Words: {entry['word_count']}, Rate: {entry['speech_rate_wpm']}wpm]"
line += f" [Sentiment: {entry['sentiment']} ({entry['sentiment_score']})]"
line += f" [Emotion: {entry['emotion']} ({entry['emotion_score']})]"
formatted_lines.append(line)
return '\n'.join(formatted_lines)
def calculate_slp_metrics(rich_transcript):
"""Calculate comprehensive SLP metrics"""
if not rich_transcript:
return {}
# Basic metrics
total_sentences = len(rich_transcript)
total_words = sum(entry['word_count'] for entry in rich_transcript)
total_duration = rich_transcript[-1]['timestamp'] if rich_transcript else 0
# Speaker analysis
speakers = {}
for entry in rich_transcript:
speaker = entry['speaker']
if speaker not in speakers:
speakers[speaker] = {
'sentences': 0,
'words': 0,
'sentiments': [],
'emotions': []
}
speakers[speaker]['sentences'] += 1
speakers[speaker]['words'] += entry['word_count']
speakers[speaker]['sentiments'].append(entry['sentiment'])
speakers[speaker]['emotions'].append(entry['emotion'])
# Word-level analysis
all_words = []
for entry in rich_transcript:
words = entry['sentence'].lower().split()
all_words.extend(words)
# Word frequency distribution
word_freq = {}
for word in all_words:
word_clean = re.sub(r'[^\w\s]', '', word)
if word_clean:
word_freq[word_clean] = word_freq.get(word_clean, 0) + 1
# Vocabulary diversity (Type-Token Ratio)
unique_words = len(set(all_words))
ttr = unique_words / total_words if total_words > 0 else 0
# Speech rate analysis
speech_rates = [entry['speech_rate_wpm'] for entry in rich_transcript]
avg_speech_rate = np.mean(speech_rates) if speech_rates else 0
# Sentiment analysis
sentiment_counts = {}
emotion_counts = {}
for entry in rich_transcript:
sentiment_counts[entry['sentiment']] = sentiment_counts.get(entry['sentiment'], 0) + 1
emotion_counts[entry['emotion']] = emotion_counts.get(entry['emotion'], 0) + 1
# Sentence complexity
sentence_lengths = [entry['word_count'] for entry in rich_transcript]
avg_sentence_length = np.mean(sentence_lengths) if sentence_lengths else 0
# Pause analysis
pauses = []
for i in range(1, len(rich_transcript)):
pause = rich_transcript[i]['timestamp'] - rich_transcript[i-1]['timestamp']
pauses.append(pause)
avg_pause_duration = np.mean(pauses) if pauses else 0
return {
'total_sentences': total_sentences,
'total_words': total_words,
'total_duration_seconds': total_duration,
'unique_words': unique_words,
'type_token_ratio': round(ttr, 3),
'avg_sentence_length': round(avg_sentence_length, 1),
'avg_speech_rate_wpm': round(avg_speech_rate, 1),
'avg_pause_duration': round(avg_pause_duration, 1),
'sentiment_distribution': sentiment_counts,
'emotion_distribution': emotion_counts,
'word_frequency': dict(sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]),
'speech_rate_variability': round(np.std(speech_rates), 1) if speech_rates else 0,
'speakers': speakers,
'speaker_count': len(speakers)
}
def process_file(file):
"""Process uploaded file"""
if file is None:
return "Please upload a file first."
try:
# Read file content
with open(file.name, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
if not content.strip():
return "File appears to be empty."
return content
except Exception as e:
return f"Error reading file: {str(e)}"
def analyze_transcript_content(transcript_content, age, gender, slp_notes):
"""Analyze transcript content with comprehensive quantification and detailed citations"""
if not transcript_content or len(transcript_content.strip()) < 50:
return "Error: Please provide a longer transcript for analysis."
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
# Enhanced comprehensive analysis prompt with detailed quantification
prompt = f"""
You are a speech-language pathologist conducting a COMPREHENSIVE CASL assessment. Provide a SINGLE, DETAILED analysis that quantifies EVERY occurrence and cites specific examples.
Patient: {age}-year-old {gender}
TRANSCRIPT:
{transcript_content}{notes_section}
INSTRUCTIONS: Provide ONE comprehensive analysis covering ALL areas below. QUANTIFY EVERYTHING with exact counts and cite SPECIFIC examples from the transcript. Be thorough and detailed. COMPLETE ALL 12 SECTIONS.
COMPREHENSIVE CASL ANALYSIS:
1. SPEECH FACTORS (with EXACT counts and specific citations):
A. Fluency Issues:
- Count and cite EVERY filler word ("um", "uh", "like", "you know", etc.)
- Count and cite EVERY false start/self-correction
- Count and cite EVERY repetition of words/phrases
- Count and cite EVERY revision/restart
- Calculate percentage of disfluent speech
B. Word Retrieval Issues:
- Count and cite EVERY instance of circumlocution
- Count and cite EVERY incomplete thought/abandoned utterance
- Count and cite EVERY word-finding pause
- Count and cite EVERY use of generic terms ("thing", "stuff", etc.)
C. Grammatical Errors:
- Count and cite EVERY grammatical error (verb tense, subject-verb agreement, etc.)
- Count and cite EVERY syntactic error
- Count and cite EVERY morphological error
- Count and cite EVERY run-on sentence
2. LANGUAGE SKILLS ASSESSMENT (with specific evidence):
A. Lexical/Semantic Skills:
- Count total unique words vs. total words (Type-Token Ratio)
- List and categorize vocabulary by sophistication level
- Identify semantic relationships demonstrated
- Assess word retrieval strategies used
- Evaluate semantic precision
B. Syntactic Skills:
- Count sentence types (simple, compound, complex, compound-complex)
- Calculate average sentence length
- Identify syntactic patterns and errors
- Assess clause complexity and embedding
C. Supralinguistic Skills:
- Identify and cite examples of:
* Cause-effect relationships
* Inferences made
* Non-literal language use
* Problem-solving language
* Metalinguistic awareness
3. COMPLEX SENTENCE ANALYSIS (with exact counts):
A. Coordinating Conjunctions:
- Count and cite EVERY use of: and, but, or, so, yet, for, nor
- Analyze patterns of use
- Assess age-appropriateness
B. Subordinating Conjunctions:
- Count and cite EVERY use of: because, although, while, since, if, when, where, that, which, who, whom, whose
- Analyze clause complexity
- Assess embedding depth
C. Sentence Structure Analysis:
- Count each sentence type with examples
- Calculate complexity ratios
- Assess developmental appropriateness
4. FIGURATIVE LANGUAGE ANALYSIS (with exact counts):
A. Similes:
- Count and cite EVERY simile (comparisons using "like" or "as")
- Analyze creativity and appropriateness
B. Metaphors:
- Count and cite EVERY metaphor (direct comparisons)
- Assess comprehension and use
C. Idioms:
- Count and cite EVERY idiom used
- Assess comprehension and appropriate use
D. Non-literal Language:
- Count and cite EVERY instance of sarcasm, humor, irony
- Assess comprehension level
5. PRAGMATIC LANGUAGE ASSESSMENT (with specific examples):
A. Turn-taking:
- Analyze conversational flow
- Count interruptions or overlaps
- Assess reciprocity
B. Topic Management:
- Count topic shifts
- Assess topic maintenance
- Evaluate topic introduction
C. Social Communication:
- Assess register appropriateness
- Evaluate politeness markers
- Analyze social awareness
6. VOCABULARY AND SEMANTIC ANALYSIS (with quantification):
A. Vocabulary Diversity:
- Calculate Type-Token Ratio
- List most frequent words
- Assess vocabulary sophistication
B. Semantic Relationships:
- Count and cite examples of:
* Synonyms/antonyms
* Categories/hierarchies
* Part-whole relationships
* Cause-effect vocabulary
7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS (with counts):
A. Morphological Markers:
- Count and cite use of:
* Plurals (-s, -es)
* Possessives
* Verb tenses
* Derivational morphemes
B. Phonological Patterns:
- Identify speech sound errors
- Count phonological processes
- Assess syllable structure
8. COGNITIVE-LINGUISTIC FACTORS (with evidence):
A. Working Memory:
- Assess sentence length complexity
- Analyze information retention
- Evaluate processing demands
B. Processing Speed:
- Analyze speech rate
- Assess response time
- Evaluate efficiency
C. Executive Function:
- Assess planning and organization
- Evaluate self-monitoring
- Analyze cognitive flexibility
9. FLUENCY AND RHYTHM ANALYSIS (with quantification):
A. Speech Rate:
- Calculate words per minute
- Analyze rate variability
- Assess naturalness
B. Pause Patterns:
- Count and analyze pauses
- Assess pause function
- Evaluate rhythm
10. QUANTITATIVE METRICS:
- Total words: [count]
- Total sentences: [count]
- Average sentence length: [calculation]
- Type-Token Ratio: [calculation]
- Disfluency rate: [percentage]
- Error rate: [percentage]
- Vocabulary diversity score: [calculation]
11. CLINICAL IMPLICATIONS:
A. Strengths:
- List specific strengths with evidence
- Identify areas of competence
B. Areas of Need:
- Prioritize intervention targets
- Provide specific examples
C. Treatment Recommendations:
- List 5-7 specific intervention strategies
- Include intensity and frequency recommendations
- Address all identified areas of need
12. PROGNOSIS AND SUMMARY:
- Overall communication profile
- Developmental appropriateness
- Impact on academic/social functioning
- Expected progress with intervention
FORMAT REQUIREMENTS:
- Use bullet points for organization
- Include exact counts for everything
- Cite specific quotes from transcript
- Use clear headings and subheadings
- Provide percentages and ratios where applicable
- Be comprehensive but organized
- Focus on clinical relevance
- COMPLETE ALL 12 SECTIONS
SECTION CHECKLIST - COMPLETE ALL:
β‘ 1. SPEECH FACTORS (A, B, C)
β‘ 2. LANGUAGE SKILLS ASSESSMENT (A, B, C)
β‘ 3. COMPLEX SENTENCE ANALYSIS (A, B, C)
β‘ 4. FIGURATIVE LANGUAGE ANALYSIS (A, B, C, D)
β‘ 5. PRAGMATIC LANGUAGE ASSESSMENT (A, B, C)
β‘ 6. VOCABULARY AND SEMANTIC ANALYSIS (A, B)
β‘ 7. MORPHOLOGICAL AND PHONOLOGICAL ANALYSIS (A, B)
β‘ 8. COGNITIVE-LINGUISTIC FACTORS (A, B, C)
β‘ 9. FLUENCY AND RHYTHM ANALYSIS (A, B)
β‘ 10. QUANTITATIVE METRICS
β‘ 11. CLINICAL IMPLICATIONS (A, B, C)
β‘ 12. PROGNOSIS AND SUMMARY
CRITICAL: If you cannot complete all 12 sections in one response, end with <CONTINUE> and continue with the remaining sections. Do not skip any sections. Use the checklist to ensure all sections are completed.
"""
# Get analysis from Claude API
result = call_claude_api_with_continuation(prompt, max_continuations=5)
return result
def analyze_transcript(file, age, gender, slp_notes):
"""Analyze transcript from file upload"""
if file is None:
return "Please upload a transcript file first."
# Get transcript content
transcript = process_file(file)
if transcript.startswith("Error") or transcript.startswith("Please"):
return transcript
return analyze_transcript_content(transcript, age, gender, slp_notes)
def targeted_analysis(transcript, custom_question, age, gender, slp_notes):
"""Perform targeted analysis based on custom questions with comprehensive detail"""
if not transcript or not transcript.strip():
return "Please provide a transcript first."
if not custom_question or not custom_question.strip():
return "Please enter a specific question for analysis."
# Add SLP notes to the prompt if provided
notes_section = ""
if slp_notes and slp_notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{slp_notes.strip()}
"""
# Enhanced targeted analysis prompt with comprehensive detail
prompt = f"""
You are a speech-language pathologist conducting a DETAILED targeted analysis of a speech transcript.
Patient: {age}-year-old {gender}
TRANSCRIPT:
{transcript}{notes_section}
SPECIFIC QUESTION FOR ANALYSIS:
{custom_question.strip()}
INSTRUCTIONS: Provide a COMPREHENSIVE, DETAILED analysis that directly addresses this specific question. Include:
- EXACT counts and quantification
- SPECIFIC citations from the transcript
- DETAILED examples for every observation
- PERCENTAGES and ratios where applicable
- CLINICAL significance of findings
- AGE-APPROPRIATE assessment
ANALYSIS REQUIREMENTS:
1. QUANTIFICATION:
- Count every relevant occurrence
- Calculate percentages and ratios
- Provide specific numbers for all observations
2. EVIDENCE:
- Cite exact quotes from the transcript
- Provide line-by-line examples
- Include specific timestamps or context
3. DETAILED EXAMPLES:
- Give multiple examples for each pattern
- Show variations in the pattern
- Demonstrate the range of severity
4. CLINICAL ASSESSMENT:
- Assess severity level
- Compare to age expectations
- Identify clinical significance
- Suggest intervention implications
5. COMPREHENSIVE COVERAGE:
- Address all aspects of the question
- Consider related language areas
- Include both strengths and weaknesses
- Provide developmental context
ANALYSIS STRUCTURE:
A. DIRECT ANSWER TO QUESTION:
- Provide a clear, direct answer
- Include quantification and severity assessment
B. DETAILED EVIDENCE:
- List every relevant example with exact quotes
- Provide counts and percentages
- Show patterns and variations
C. PATTERN ANALYSIS:
- Identify underlying patterns
- Analyze frequency and consistency
- Assess variability across the transcript
D. DEVELOPMENTAL ASSESSMENT:
- Compare to age-appropriate expectations
- Identify developmental level
- Assess progress and challenges
E. CLINICAL IMPLICATIONS:
- Impact on communication
- Effect on academic/social functioning
- Priority for intervention
F. INTERVENTION CONSIDERATIONS:
- Specific strategies to address the issue
- Intensity and frequency recommendations
- Expected outcomes and timeline
FORMAT REQUIREMENTS:
- Use clear headings and subheadings
- Include bullet points for organization
- Provide exact counts and percentages
- Cite specific quotes with context
- Be thorough and comprehensive
- Focus on clinical relevance and utility
Remember: This should be a DETAILED, COMPREHENSIVE analysis that thoroughly addresses the specific question with quantification, evidence, and clinical implications.
"""
# Get targeted analysis from Claude API
result = call_claude_api_with_continuation(prompt, max_continuations=3)
return result
# Create enhanced interface with tabs
with gr.Blocks(title="Enhanced CASL Analysis", theme=gr.themes.Soft()) as app:
gr.Markdown("# π£οΈ Enhanced CASL Analysis Tool")
gr.Markdown("Upload a speech transcript, paste text, or transcribe audio/video and get instant CASL assessment results with targeted analysis options.")
# Store transcript globally
transcript_state = gr.State("")
with gr.Tabs():
# Tab 1: Basic Analysis
with gr.Tab("π Basic Analysis"):
with gr.Row():
with gr.Column():
gr.Markdown("### Input Options")
with gr.Tabs():
with gr.Tab("π File Upload"):
file_upload = gr.File(
label="Upload Transcript File",
file_types=[".txt", ".cha"]
)
analyze_file_btn = gr.Button(
"π Analyze File",
variant="primary"
)
with gr.Tab("π Text Input"):
text_input = gr.Textbox(
label="Paste Transcript Here",
placeholder="Paste your transcript text here...",
lines=10
)
analyze_text_btn = gr.Button(
"π Analyze Text",
variant="primary"
)
with gr.Tab("π€ Audio/Video Transcription"):
audio_input = gr.File(
label="Upload Audio/Video File",
file_types=["audio", "video"]
)
transcribe_btn = gr.Button(
"π€ Transcribe & Analyze",
variant="primary"
)
transcription_status = gr.Markdown("")
gr.Markdown("### Patient Information")
age = gr.Number(
label="Patient Age",
value=8,
minimum=1,
maximum=120
)
gender = gr.Radio(
["male", "female", "other"],
label="Gender",
value="male"
)
slp_notes = gr.Textbox(
label="SLP Clinical Notes (Optional)",
placeholder="Enter any additional clinical observations, context, or notes...",
lines=3
)
with gr.Column():
gr.Markdown("### Analysis Results")
output = gr.Textbox(
label="CASL Analysis Report",
placeholder="Analysis results will appear here...",
lines=25,
max_lines=30
)
analysis_progress = gr.Markdown("")
# Tab 2: Targeted Analysis
with gr.Tab("π― Targeted Analysis"):
with gr.Row():
with gr.Column():
gr.Markdown("### Transcript Input")
transcript_input = gr.Textbox(
label="Paste Transcript Here",
placeholder="Paste your transcript text here, or use the transcript from Basic Analysis...",
lines=10
)
gr.Markdown("### Custom Analysis Question")
# Predefined question templates
question_templates = gr.Dropdown(
choices=[
"Select a template or write your own...",
"What specific speech patterns indicate word-finding difficulties?",
"How does the patient's grammar compare to age expectations?",
"What evidence suggests fluency issues in this transcript?",
"What pragmatic language skills are demonstrated?",
"How does the patient handle complex sentence structures?",
"What narrative organization skills are evident?",
"What specific intervention targets would you recommend?",
"How does this patient's language compare to typical development?",
"What evidence suggests cognitive-linguistic strengths/weaknesses?",
"Analyze the use of conjunctions and complex sentences",
"Identify and analyze figurative language use"
],
label="Question Templates (Optional)",
value="Select a template or write your own..."
)
custom_question = gr.Textbox(
label="Your Specific Question",
placeholder="Enter your specific analysis question here...",
lines=3
)
targeted_analyze_btn = gr.Button(
"π― Analyze Specific Question",
variant="primary"
)
with gr.Column():
gr.Markdown("### Targeted Analysis Results")
targeted_output = gr.Textbox(
label="Targeted Analysis Report",
placeholder="Targeted analysis results will appear here...",
lines=25,
max_lines=30
)
targeted_progress = gr.Markdown("")
# Tab 3: Quick Questions
with gr.Tab("β‘ Quick Questions"):
with gr.Row():
with gr.Column():
gr.Markdown("### Quick Analysis Questions")
quick_transcript = gr.Textbox(
label="Transcript",
placeholder="Paste transcript here...",
lines=8
)
gr.Markdown("### Select Quick Questions")
quick_questions = gr.CheckboxGroup(
choices=[
"Word-finding difficulties",
"Grammar errors",
"Fluency issues",
"Pragmatic skills",
"Narrative structure",
"Vocabulary level",
"Sentence complexity",
"Speech rate patterns",
"Complex sentence analysis",
"Figurative language use",
"Morphological markers",
"Phonological patterns",
"Turn-taking skills",
"Topic maintenance",
"Social communication",
"Cognitive-linguistic factors",
"Working memory demands",
"Executive function skills",
"Metalinguistic awareness",
"Academic language use"
],
label="Select questions to analyze:",
value=[]
)
quick_analyze_btn = gr.Button(
"β‘ Quick Analysis",
variant="primary"
)
with gr.Column():
gr.Markdown("### Quick Analysis Results")
quick_output = gr.Textbox(
label="Quick Analysis Report",
placeholder="Quick analysis results will appear here...",
lines=25,
max_lines=30
)
quick_progress = gr.Markdown("")
# Tab 4: Advanced Transcription
with gr.Tab("π€ Advanced Transcription"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Audio/Video Upload")
gr.Markdown("**Supported formats:** MP4, AVI, MOV, MKV, WMV, FLV, WAV, MP3, M4A, FLAC, OGG")
transcription_file_input = gr.File(
label="Upload Audio or Video File",
file_types=["audio", "video"]
)
enable_diarization = gr.Checkbox(
label="Enable Speaker Diarization",
value=True,
info="Identify different speakers in the audio"
)
transcribe_advanced_btn = gr.Button(
"π€ Transcribe with Metadata",
variant="primary",
size="lg"
)
transcription_status = gr.Markdown("")
with gr.Column(scale=2):
gr.Markdown("### Rich Transcript with Metadata")
rich_transcript_display = gr.Textbox(
label="Transcription with Speakers, Timestamps, Sentiment & Emotion",
lines=15,
max_lines=20
)
with gr.Row():
with gr.Column():
gr.Markdown("### Speech Metrics")
transcription_metrics_display = gr.Textbox(
label="SLP Metrics",
lines=10,
max_lines=15
)
with gr.Column():
gr.Markdown("### Word Frequency")
transcription_word_freq_display = gr.Dataframe(
headers=["Word", "Frequency"],
label="Most Frequent Words",
interactive=False
)
# Event handlers
def on_analyze_file(file, age_val, gender_val, notes):
"""Handle file analysis"""
result = analyze_transcript(file, age_val, gender_val, notes)
transcript = process_file(file) if file else ""
progress_msg = "β
Analysis completed" if "[Analysis completed in" in result else "π Analysis in progress..."
return result, transcript, progress_msg
def on_analyze_text(text, age_val, gender_val, notes):
"""Handle text analysis"""
result = analyze_transcript_content(text, age_val, gender_val, notes)
progress_msg = "β
Analysis completed" if "[Analysis completed in" in result else "π Analysis in progress..."
return result, text, progress_msg
def on_transcribe_and_analyze(audio_file, age_val, gender_val, notes):
"""Handle transcription and analysis"""
if not audio_file:
return "Please upload an audio/video file first.", "", "No file provided"
transcript, status = transcribe_audio(audio_file.name)
if transcript:
result = analyze_transcript_content(transcript, age_val, gender_val, notes)
progress_msg = "β
Analysis completed" if "[Analysis completed in" in result else "π Analysis in progress..."
return result, transcript, status
else:
return f"Transcription failed: {status}", "", status
def on_transcribe_advanced(audio_file, enable_diarization):
"""Handle advanced transcription"""
if not audio_file:
return "Please upload an audio/video file first.", "", "No file provided"
transcript, status = transcribe_audio_with_metadata(audio_file.name, enable_diarization)
if transcript:
metrics = calculate_slp_metrics(transcript)
word_freq_data = metrics.get('word_frequency', {})
return transcript, status, metrics, word_freq_data
else:
return f"Transcription failed: {status}", "", {}, {}
def on_targeted_analyze(transcript, question, age_val, gender_val, notes):
"""Handle targeted analysis"""
result = targeted_analysis(transcript, question, age_val, gender_val, notes)
progress_msg = "β
Targeted analysis completed" if "[Analysis completed in" in result else "π Targeted analysis in progress..."
return result, progress_msg
def on_question_template_change(template):
"""Handle question template selection"""
if template and template != "Select a template or write your own...":
return template
return ""
def on_quick_analyze(transcript, questions, age_val, gender_val, notes):
"""Handle quick analysis with multiple questions"""
if not transcript or not transcript.strip():
return "Please provide a transcript first.", "β No transcript provided"
if not questions:
return "Please select at least one question to analyze.", "β No questions selected"
# Add SLP notes to the prompt if provided
notes_section = ""
if notes and notes.strip():
notes_section = f"""
SLP CLINICAL NOTES:
{notes.strip()}
"""
# Create enhanced quick analysis prompt with comprehensive SLP analysis
questions_text = "\n".join([f"- {q}" for q in questions])
prompt = f"""
You are a speech-language pathologist conducting a COMPREHENSIVE quick analysis of a speech transcript.
Patient: {age_val}-year-old {gender_val}
TRANSCRIPT:
{transcript}{notes_section}
Please provide a DETAILED analysis addressing these specific areas:
{questions_text}
ANALYSIS REQUIREMENTS:
For each selected area, provide:
1. EXACT COUNTS and quantification
2. SPECIFIC EXAMPLES with exact quotes from transcript
3. PERCENTAGES and ratios where applicable
4. SEVERITY assessment
5. AGE-APPROPRIATE evaluation
6. CLINICAL significance
7. INTERVENTION considerations
DETAILED ANALYSIS GUIDELINES:
For SYNTAX and COMPLEX SENTENCE analysis:
- Count and cite EVERY coordinating conjunction (and, but, or, so, yet, for, nor)
- Count and cite EVERY subordinating conjunction (because, although, while, since, if, when, where, that, which, who, whom, whose)
- Identify and count each sentence type (simple, compound, complex, compound-complex)
- Calculate complexity ratios and percentages
- Assess embedding depth and clause complexity
- Provide specific examples for each pattern
For FIGURATIVE LANGUAGE analysis:
- Count and cite EVERY simile (comparisons using "like" or "as")
- Count and cite EVERY metaphor (direct comparisons without "like" or "as")
- Count and cite EVERY idiom and non-literal expression
- Assess creativity and age-appropriate use
- Provide specific examples with context
For PRAGMATIC and SOCIAL COMMUNICATION:
- Count and analyze turn-taking patterns
- Assess topic maintenance and shifting abilities
- Evaluate social appropriateness and register use
- Count interruptions or conversational breakdowns
- Analyze non-literal language comprehension
- Provide specific examples of pragmatic behaviors
For VOCABULARY and SEMANTIC analysis:
- Calculate Type-Token Ratio
- Count and categorize vocabulary by sophistication level
- Analyze word retrieval strategies and circumlocution
- Assess semantic precision and relationships
- Count academic vs. everyday vocabulary use
- Provide specific examples of vocabulary patterns
For MORPHOLOGICAL and PHONOLOGICAL analysis:
- Count and cite EVERY morphological marker (plurals, possessives, verb tenses)
- Count and cite EVERY derivational morpheme (prefixes, suffixes)
- Identify and count phonological patterns and errors
- Assess syllable structure and stress patterns
- Provide specific examples of morphological use
For COGNITIVE-LINGUISTIC factors:
- Assess working memory demands in language production
- Analyze processing speed and efficiency
- Count and evaluate attention and focus patterns
- Assess executive function skills and self-monitoring
- Provide specific examples of cognitive-linguistic patterns
For FLUENCY and SPEECH RATE:
- Count and cite EVERY disfluency (fillers, repetitions, revisions)
- Calculate speech rate and variability
- Analyze pause patterns and their function
- Assess overall speech naturalness
- Provide specific examples of fluency patterns
For GRAMMAR and LANGUAGE ERRORS:
- Count and cite EVERY grammatical error
- Count and cite EVERY syntactic error
- Count and cite EVERY morphological error
- Calculate error rates and percentages
- Provide specific examples of error patterns
For WORD-FINDING and RETRIEVAL:
- Count and cite EVERY instance of circumlocution
- Count and cite EVERY incomplete thought
- Count and cite EVERY word-finding pause
- Analyze word retrieval strategies used
- Provide specific examples of retrieval patterns
For NARRATIVE and DISCOURSE:
- Assess narrative organization and coherence
- Count topic shifts and maintenance
- Analyze discourse markers and transitions
- Evaluate story structure and completeness
- Provide specific examples of narrative patterns
FORMAT REQUIREMENTS:
- Use clear headings for each area analyzed
- Include bullet points for organization
- Provide exact counts and percentages
- Cite specific quotes from transcript
- Include severity assessments
- Provide clinical implications
- Be comprehensive but focused on selected areas
Remember: This should be a DETAILED analysis that thoroughly addresses each selected area with quantification, evidence, and clinical relevance.
"""
result = call_claude_api_with_continuation(prompt, max_continuations=2)
progress_msg = "β
Quick analysis completed" if "[Analysis completed in" in result else "π Quick analysis in progress..."
return result, progress_msg
# Connect event handlers
analyze_file_btn.click(
on_analyze_file,
inputs=[file_upload, age, gender, slp_notes],
outputs=[output, transcript_input, analysis_progress]
)
analyze_text_btn.click(
on_analyze_text,
inputs=[text_input, age, gender, slp_notes],
outputs=[output, transcript_input, analysis_progress]
)
transcribe_btn.click(
on_transcribe_and_analyze,
inputs=[audio_input, age, gender, slp_notes],
outputs=[output, transcript_input, transcription_status]
)
transcribe_advanced_btn.click(
on_transcribe_advanced,
inputs=[transcription_file_input, enable_diarization],
outputs=[rich_transcript_display, transcription_status, transcription_metrics_display, transcription_word_freq_display]
)
targeted_analyze_btn.click(
on_targeted_analyze,
inputs=[transcript_input, custom_question, age, gender, slp_notes],
outputs=[targeted_output, targeted_progress]
)
question_templates.change(
on_question_template_change,
inputs=[question_templates],
outputs=[custom_question]
)
quick_analyze_btn.click(
on_quick_analyze,
inputs=[quick_transcript, quick_questions, age, gender, slp_notes],
outputs=[quick_output, quick_progress]
)
if __name__ == "__main__":
print("π Starting Enhanced CASL Analysis Tool...")
print("π Features: Basic Analysis, Targeted Questions, Quick Multi-Analysis, Advanced Transcription")
print("π€ Transcription: Audio/Video support with speaker diarization, sentiment, and emotion analysis")
print("π Analysis: Complex sentences, figurative language, pragmatic skills, cognitive-linguistic factors")
if not ANTHROPIC_API_KEY:
print("β οΈ ANTHROPIC_API_KEY not configured - analysis will show error message")
print(" For HuggingFace Spaces: Add ANTHROPIC_API_KEY as a secret in your space settings")
print(" For local use: export ANTHROPIC_API_KEY='your-key-here'")
else:
print("β
Claude API configured")
if not SPEECHBRAIN_AVAILABLE:
print("β οΈ SpeechBrain not available - transcription will be disabled")
print(" Install with: pip install speechbrain transformers torch")
else:
print("β
SpeechBrain available for transcription")
if not MOVIEPY_AVAILABLE:
print("β οΈ MoviePy not available - video processing will be limited")
print(" Install with: pip install moviepy")
else:
print("β
MoviePy available for video processing")
if not DIARIZATION_AVAILABLE:
print("β οΈ Pyannote.audio not available - speaker diarization will be disabled")
print(" Install with: pip install pyannote.audio")
print(" Note: Requires HuggingFace token for model access")
else:
print("β
Pyannote.audio available for speaker diarization")
if not SENTIMENT_AVAILABLE:
print("β οΈ Transformers not available - sentiment/emotion analysis will be disabled")
print(" Install with: pip install transformers torch")
else:
print("β
Transformers available for sentiment and emotion analysis")
app.launch(show_api=False) |