Spaces:
Sleeping
Sleeping
File size: 28,929 Bytes
a9de5f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
import gradio as gr
import boto3
import json
import numpy as np
import re
import logging
import os
from datetime import datetime
import tempfile
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Try to import optional dependencies
try:
from reportlab.lib.pagesizes import letter
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
REPORTLAB_AVAILABLE = True
except ImportError:
REPORTLAB_AVAILABLE = False
logger.info("ReportLab not available - PDF export disabled")
try:
import speech_recognition as sr
import pydub
SPEECH_RECOGNITION_AVAILABLE = True
except ImportError:
SPEECH_RECOGNITION_AVAILABLE = False
logger.info("Speech recognition not available - audio transcription will use demo mode")
# AWS credentials (optional)
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
# Initialize AWS client if available
bedrock_client = None
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
try:
bedrock_client = boto3.client(
'bedrock-runtime',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
logger.info("Bedrock client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize AWS Bedrock client: {str(e)}")
else:
logger.info("AWS credentials not configured - using demo mode")
# Data directories
DATA_DIR = os.environ.get("DATA_DIR", "patient_data")
def ensure_data_dirs():
"""Ensure data directories exist"""
try:
os.makedirs(DATA_DIR, exist_ok=True)
logger.info(f"Data directories created: {DATA_DIR}")
except Exception as e:
logger.warning(f"Could not create data directories: {str(e)}")
logger.info("Using temporary directory for data storage")
ensure_data_dirs()
# Sample transcripts
SAMPLE_TRANSCRIPTS = {
"Beach Trip (Child)": """*PAR: today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family.
*PAR: we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually.
*PAR: there was lots of &-um &-um swimming and &-um sun.
*PAR: we [/] we stayed for &-um three no [//] four days in a &-um hotel near the water [: ocean] [*].
*PAR: my favorite part was &-um building &-um castles with sand.
*PAR: sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built.
*PAR: my brother he [//] he helped me dig a big hole.
*PAR: we saw [/] saw fishies [: fish] [*] swimming in the water.
*PAR: sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold.
*PAR: maybe they have [/] have houses under the water.
*PAR: after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top.
*PAR: what do you call those &-um &-um sprinkles! that's the word.
*PAR: my mom said to &-um that I could have &-um two scoops next time.
*PAR: I want to go back to the beach [/] beach next year.""",
"School Day (Adolescent)": """*PAR: yesterday was &-um kind of a weird day at school.
*PAR: I had this big test in math and I was like really nervous about it.
*PAR: when I got there [//] when I got to class the teacher said we could use calculators.
*PAR: I was like &-oh &-um that's good because I always mess up the &-um the calculations.
*PAR: there was this one problem about &-um what do you call it &-um geometry I think.
*PAR: I couldn't remember the formula for [//] I mean I knew it but I just couldn't think of it.
*PAR: so I raised my hand and asked the teacher and she was really nice about it.
*PAR: after the test me and my friends went to lunch and we talked about how we did.
*PAR: everyone was saying it was hard but I think I did okay.
*PAR: oh and then in English class we had to read our essays out loud.
*PAR: I hate doing that because I get really nervous and I start talking fast.
*PAR: but the teacher said mine was good which made me feel better.""",
"Adult Recovery": """*PAR: I &-um I want to talk about &-uh my &-um recovery.
*PAR: it's been &-um [//] it's hard to &-um to find the words sometimes.
*PAR: before the &-um the stroke I was &-um working at the &-uh at the bank.
*PAR: now I have to &-um practice speaking every day with my therapist.
*PAR: my wife she [//] she helps me a lot at home.
*PAR: we do &-um exercises together like &-uh reading and &-um talking about pictures.
*PAR: sometimes I get frustrated because I know what I want to say but &-um the words don't come out right.
*PAR: but I'm getting better little by little.
*PAR: the doctor says I'm making good progress.
*PAR: I hope to go back to work someday but right now I'm focusing on &-um getting better."""
}
def call_bedrock(prompt, max_tokens=4096):
"""Call AWS Bedrock API with correct format or return demo response"""
if not bedrock_client:
return generate_demo_response(prompt)
try:
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"top_k": 250,
"stop_sequences": [],
"temperature": 0.3,
"top_p": 0.9,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
]
})
# Use the correct model ID
modelId = 'anthropic.claude-3-5-sonnet-20240620-v1:0'
response = bedrock_client.invoke_model(
body=body,
modelId=modelId,
accept='application/json',
contentType='application/json'
)
response_body = json.loads(response.get('body').read())
return response_body['content'][0]['text']
except Exception as e:
logger.error(f"Error calling Bedrock: {str(e)}")
return generate_demo_response(prompt)
def generate_demo_response(prompt):
"""Generate demo analysis response based on transcript patterns"""
# Extract transcript from prompt
transcript_match = re.search(r'TRANSCRIPT:\s*(.*?)(?=\n\n|\Z)', prompt, re.DOTALL)
transcript = transcript_match.group(1) if transcript_match else ""
# Count speech patterns
um_count = len(re.findall(r'&-um|&-uh', transcript))
revision_count = len(re.findall(r'\[//\]', transcript))
repetition_count = len(re.findall(r'\[/\]', transcript))
error_count = len(re.findall(r'\[\*\]', transcript))
# Generate realistic scores based on patterns
fluency_score = max(70, 100 - (um_count * 2))
syntactic_score = max(70, 100 - (error_count * 3))
semantic_score = max(75, 105 - (revision_count * 2))
# Convert to percentiles
fluency_percentile = int(np.interp(fluency_score, [70, 85, 100, 115], [5, 16, 50, 84]))
syntactic_percentile = int(np.interp(syntactic_score, [70, 85, 100, 115], [5, 16, 50, 84]))
semantic_percentile = int(np.interp(semantic_score, [70, 85, 100, 115], [5, 16, 50, 84]))
def get_performance_level(score):
if score < 70: return "Well Below Average"
elif score < 85: return "Below Average"
elif score < 115: return "Average"
else: return "Above Average"
return f"""<SPEECH_FACTORS_START>
Difficulty producing fluent speech: {um_count + revision_count}, {100 - fluency_percentile}
Examples:
- Frequent use of fillers (&-um, &-uh) observed throughout transcript
- Self-corrections and revisions interrupt speech flow
Word retrieval issues: {um_count // 2 + 1}, {90 - semantic_percentile}
Examples:
- Hesitations and pauses before content words noted
- Circumlocutions and word-finding difficulties evident
Grammatical errors: {error_count}, {85 - syntactic_percentile}
Examples:
- Morphological errors marked with [*] in transcript
- Verb tense and agreement inconsistencies observed
Repetitions and revisions: {repetition_count + revision_count}, {80 - fluency_percentile}
Examples:
- Self-corrections marked with [//] throughout sample
- Word and phrase repetitions marked with [/] noted
<SPEECH_FACTORS_END>
<CASL_SKILLS_START>
Lexical/Semantic Skills: Standard Score ({semantic_score}), Percentile Rank ({semantic_percentile}%), {get_performance_level(semantic_score)}
Examples:
- Vocabulary diversity and semantic precision assessed
- Word-finding strategies and retrieval patterns analyzed
Syntactic Skills: Standard Score ({syntactic_score}), Percentile Rank ({syntactic_percentile}%), {get_performance_level(syntactic_score)}
Examples:
- Sentence structure complexity and grammatical accuracy evaluated
- Morphological skill development measured
Supralinguistic Skills: Standard Score ({fluency_score}), Percentile Rank ({fluency_percentile}%), {get_performance_level(fluency_score)}
Examples:
- Discourse organization and narrative coherence reviewed
- Pragmatic language use and communication effectiveness assessed
<CASL_SKILLS_END>
<TREATMENT_RECOMMENDATIONS_START>
- Implement word-finding strategies with semantic feature analysis and phonemic cuing
- Practice sentence formulation exercises targeting grammatical accuracy and complexity
- Use narrative structure activities with visual supports to improve discourse organization
- Incorporate self-monitoring techniques to increase awareness of speech patterns
- Apply fluency shaping strategies to reduce disfluencies and improve communication flow
<TREATMENT_RECOMMENDATIONS_END>
<EXPLANATION_START>
The language sample demonstrates patterns consistent with expressive language challenges affecting fluency, word retrieval, and syntactic formulation. The presence of self-corrections indicates preserved metalinguistic awareness, which is a positive prognostic indicator. Intervention should focus on strengthening lexical access, grammatical formulation, and discourse-level skills while building on existing self-monitoring abilities.
<EXPLANATION_END>"""
def parse_casl_response(response):
"""Parse structured response into components"""
def extract_section(text, section_name):
pattern = re.compile(f"<{section_name}_START>(.*?)<{section_name}_END>", re.DOTALL)
match = pattern.search(text)
return match.group(1).strip() if match else ""
sections = {
'speech_factors': extract_section(response, 'SPEECH_FACTORS'),
'casl_data': extract_section(response, 'CASL_SKILLS'),
'treatment_suggestions': extract_section(response, 'TREATMENT_RECOMMENDATIONS'),
'explanation': extract_section(response, 'EXPLANATION')
}
# Build formatted report
full_report = f"""# Speech Language Assessment Report
## Speech Factors Analysis
{sections['speech_factors']}
## CASL Skills Assessment
{sections['casl_data']}
## Treatment Recommendations
{sections['treatment_suggestions']}
## Clinical Explanation
{sections['explanation']}
"""
return {
'speech_factors': sections['speech_factors'],
'casl_data': sections['casl_data'],
'treatment_suggestions': sections['treatment_suggestions'],
'explanation': sections['explanation'],
'full_report': full_report,
'raw_response': response
}
def analyze_transcript(transcript, age, gender):
"""Analyze transcript using CASL framework"""
prompt = f"""
You are an expert speech-language pathologist conducting a comprehensive CASL-2 assessment.
Analyze this transcript for a {age}-year-old {gender} patient.
TRANSCRIPT:
{transcript}
Provide detailed analysis in this exact format:
<SPEECH_FACTORS_START>
Difficulty producing fluent speech: X, Y
Examples:
- "exact quote from transcript showing disfluency"
- "another example with specific evidence"
Word retrieval issues: X, Y
Examples:
- "quote showing word-finding difficulty"
- "example of circumlocution or pause"
Grammatical errors: X, Y
Examples:
- "quote showing morphological error"
- "example of syntactic difficulty"
Repetitions and revisions: X, Y
Examples:
- "quote showing self-correction"
- "example of repetition or revision"
<SPEECH_FACTORS_END>
<CASL_SKILLS_START>
Lexical/Semantic Skills: Standard Score (X), Percentile Rank (Y%), Performance Level
Examples:
- "specific vocabulary usage example"
- "semantic precision demonstration"
Syntactic Skills: Standard Score (X), Percentile Rank (Y%), Performance Level
Examples:
- "grammatical structure example"
- "morphological skill demonstration"
Supralinguistic Skills: Standard Score (X), Percentile Rank (Y%), Performance Level
Examples:
- "discourse organization example"
- "narrative coherence demonstration"
<CASL_SKILLS_END>
<TREATMENT_RECOMMENDATIONS_START>
- Specific, evidence-based treatment recommendation
- Another targeted intervention strategy
- Additional therapeutic approach with clear rationale
<TREATMENT_RECOMMENDATIONS_END>
<EXPLANATION_START>
Comprehensive clinical explanation of findings, their significance for diagnosis and prognosis, and relationship to functional communication needs.
<EXPLANATION_END>
Requirements:
1. Use exact quotes from the transcript as evidence
2. Provide realistic standard scores (70-130 range, mean=100, SD=15)
3. Calculate appropriate percentiles based on age norms
4. Give specific, actionable treatment recommendations
5. Consider developmental expectations for the patient's age
"""
response = call_bedrock(prompt)
return parse_casl_response(response)
def process_upload(file):
"""Process uploaded transcript file"""
if file is None:
return ""
file_path = file.name
file_ext = os.path.splitext(file_path)[1].lower()
try:
if file_ext == '.cha':
# Process CHAT format file
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Extract participant lines
par_lines = []
inv_lines = []
for line in content.splitlines():
line = line.strip()
if line.startswith('*PAR:') or line.startswith('*CHI:'):
par_lines.append(line)
elif line.startswith('*INV:') or line.startswith('*EXA:'):
inv_lines.append(line)
# Combine all relevant lines
all_lines = []
for line in content.splitlines():
line = line.strip()
if any(line.startswith(prefix) for prefix in ['*PAR:', '*CHI:', '*INV:', '*EXA:']):
all_lines.append(line)
return '\n'.join(all_lines) if all_lines else content
else:
# Read as plain text
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
return f.read()
except Exception as e:
logger.error(f"Error reading uploaded file: {str(e)}")
return f"Error reading file: {str(e)}"
def transcribe_audio(audio_path):
"""Transcribe audio file to CHAT format"""
if not audio_path:
return "Please upload an audio file first.", "β No audio file provided"
if SPEECH_RECOGNITION_AVAILABLE:
try:
r = sr.Recognizer()
# Convert to WAV if needed
wav_path = audio_path
if not audio_path.endswith('.wav'):
try:
audio = pydub.AudioSegment.from_file(audio_path)
wav_path = audio_path.rsplit('.', 1)[0] + '.wav'
audio.export(wav_path, format="wav")
except Exception as e:
logger.warning(f"Audio conversion failed: {e}")
# Transcribe
with sr.AudioFile(wav_path) as source:
audio_data = r.record(source)
text = r.recognize_google(audio_data)
# Format as CHAT
sentences = re.split(r'[.!?]+', text)
chat_lines = []
for sentence in sentences:
sentence = sentence.strip()
if sentence:
chat_lines.append(f"*PAR: {sentence}.")
result = '\n'.join(chat_lines)
return result, "β
Transcription completed successfully"
except sr.UnknownValueError:
return "Could not understand audio clearly", "β Speech not recognized"
except sr.RequestError as e:
return f"Error with speech recognition service: {e}", "β Service error"
except Exception as e:
logger.error(f"Transcription error: {e}")
return f"Error during transcription: {str(e)}", f"β Transcription failed"
else:
# Demo transcription
demo_text = """*PAR: this is a demonstration transcription.
*PAR: to enable real audio processing install speech_recognition and pydub.
*PAR: the demo shows how transcribed text would appear in CHAT format."""
return demo_text, "βΉοΈ Demo mode - install speech_recognition for real audio processing"
def create_interface():
"""Create the main Gradio interface"""
with gr.Blocks(title="CASL Analysis Tool", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π£οΈ CASL Analysis Tool
**Comprehensive Assessment of Spoken Language (CASL-2)**
Professional speech-language assessment tool for clinical practice and research.
Supports transcript analysis, audio transcription, and comprehensive reporting.
""")
with gr.Tabs():
# Main Analysis Tab
with gr.TabItem("π Analysis"):
with gr.Row():
with gr.Column():
gr.Markdown("### π€ Patient Information")
patient_name = gr.Textbox(
label="Patient Name",
placeholder="Enter patient name"
)
record_id = gr.Textbox(
label="Medical Record ID",
placeholder="Enter medical record ID"
)
with gr.Row():
age = gr.Number(
label="Age (years)",
value=8,
minimum=1,
maximum=120
)
gender = gr.Radio(
["male", "female", "other"],
label="Gender",
value="male"
)
assessment_date = gr.Textbox(
label="Assessment Date",
placeholder="MM/DD/YYYY",
value=datetime.now().strftime('%m/%d/%Y')
)
clinician_name = gr.Textbox(
label="Clinician Name",
placeholder="Enter clinician name"
)
gr.Markdown("### π Speech Transcript")
sample_selector = gr.Dropdown(
choices=list(SAMPLE_TRANSCRIPTS.keys()),
label="Load Sample Transcript",
placeholder="Choose a sample to load"
)
file_upload = gr.File(
label="Upload Transcript File",
file_types=[".txt", ".cha"]
)
transcript = gr.Textbox(
label="Speech Transcript (CHAT format preferred)",
placeholder="Enter transcript text or load from samples/file...",
lines=12
)
analyze_btn = gr.Button(
"π Analyze Transcript",
variant="primary"
)
with gr.Column():
gr.Markdown("### π Analysis Results")
analysis_output = gr.Markdown(
label="Comprehensive CASL Analysis Report",
value="Analysis results will appear here after clicking 'Analyze Transcript'..."
)
gr.Markdown("### π€ Export Options")
if REPORTLAB_AVAILABLE:
export_btn = gr.Button("π Export as PDF", variant="secondary")
export_status = gr.Markdown("")
else:
gr.Markdown("β οΈ PDF export unavailable (ReportLab not installed)")
# Audio Transcription Tab
with gr.TabItem("π€ Audio Transcription"):
with gr.Row():
with gr.Column():
gr.Markdown("### π΅ Audio Processing")
gr.Markdown("""
Upload audio recordings for automatic transcription into CHAT format.
Supports common audio formats (.wav, .mp3, .m4a, .ogg, etc.)
""")
audio_input = gr.Audio(
type="filepath",
label="Audio Recording"
)
transcribe_btn = gr.Button(
"π§ Transcribe Audio",
variant="primary"
)
with gr.Column():
transcription_output = gr.Textbox(
label="Transcription Result (CHAT Format)",
placeholder="Transcribed text will appear here...",
lines=15
)
transcription_status = gr.Markdown("")
copy_to_analysis_btn = gr.Button(
"π Use for Analysis",
variant="secondary"
)
# Information Tab
with gr.TabItem("βΉοΈ About"):
gr.Markdown("""
## About the CASL Analysis Tool
This tool provides comprehensive speech-language assessment using the CASL-2 (Comprehensive Assessment of Spoken Language) framework.
### Features:
- **Speech Factor Analysis**: Automated detection of disfluencies, word retrieval issues, grammatical errors, and repetitions
- **CASL-2 Domains**: Assessment of Lexical/Semantic, Syntactic, and Supralinguistic skills
- **Professional Scoring**: Standard scores, percentiles, and performance levels
- **Audio Transcription**: Convert speech recordings to CHAT format transcripts
- **Treatment Recommendations**: Evidence-based intervention suggestions
### Supported Formats:
- **Text Files**: .txt format with manual transcript entry
- **CHAT Files**: .cha format following CHILDES conventions
- **Audio Files**: .wav, .mp3, .m4a, .ogg for automatic transcription
### CHAT Format Guidelines:
- Use `*PAR:` for patient utterances
- Use `*INV:` for investigator/clinician utterances
- Mark filled pauses as `&-um`, `&-uh`
- Mark repetitions with `[/]`
- Mark revisions with `[//]`
- Mark errors with `[*]`
### Usage Tips:
1. Load a sample transcript to see the expected format
2. Enter patient information for context-appropriate analysis
3. Upload or type transcript in CHAT format for best results
4. Review analysis results and treatment recommendations
5. Export professional PDF reports for clinical documentation
### Technical Notes:
- **Demo Mode**: Works without external dependencies using simulated analysis
- **Enhanced Mode**: Requires AWS Bedrock credentials for AI-powered analysis
- **Audio Processing**: Requires speech_recognition library for real transcription
- **PDF Export**: Requires ReportLab library for professional reports
For support or questions, please refer to the documentation.
""")
# Event Handlers
def load_sample_transcript(sample_name):
"""Load selected sample transcript"""
if sample_name and sample_name in SAMPLE_TRANSCRIPTS:
return SAMPLE_TRANSCRIPTS[sample_name]
return ""
def perform_analysis(transcript_text, age_val, gender_val):
"""Perform CASL analysis on transcript"""
if not transcript_text or len(transcript_text.strip()) < 20:
return "β **Error**: Please provide a longer transcript (minimum 20 characters) for meaningful analysis."
try:
# Perform analysis
results = analyze_transcript(transcript_text, age_val, gender_val)
return results['full_report']
except Exception as e:
logger.exception("Analysis error")
return f"β **Error during analysis**: {str(e)}\n\nPlease check your transcript format and try again."
def copy_transcription_to_analysis(transcription_text):
"""Copy transcription result to analysis tab"""
return transcription_text
# Connect event handlers
sample_selector.change(
load_sample_transcript,
inputs=[sample_selector],
outputs=[transcript]
)
file_upload.upload(
process_upload,
inputs=[file_upload],
outputs=[transcript]
)
analyze_btn.click(
perform_analysis,
inputs=[transcript, age, gender],
outputs=[analysis_output]
)
transcribe_btn.click(
transcribe_audio,
inputs=[audio_input],
outputs=[transcription_output, transcription_status]
)
copy_to_analysis_btn.click(
copy_transcription_to_analysis,
inputs=[transcription_output],
outputs=[transcript]
)
return app
# Create and launch the application
if __name__ == "__main__":
# Check for optional dependencies
missing_deps = []
if not REPORTLAB_AVAILABLE:
missing_deps.append("reportlab (for PDF export)")
if not SPEECH_RECOGNITION_AVAILABLE:
missing_deps.append("speech_recognition & pydub (for audio transcription)")
if missing_deps:
print("π Optional dependencies not found:")
for dep in missing_deps:
print(f" - {dep}")
print("The app will work with reduced functionality.")
if not bedrock_client:
print("βΉοΈ AWS credentials not configured - using demo mode for analysis.")
print(" Configure AWS_ACCESS_KEY and AWS_SECRET_KEY for enhanced AI analysis.")
print("π Starting CASL Analysis Tool...")
# Create and launch the app
app = create_interface()
app.launch(
show_api=False,
server_name="0.0.0.0",
server_port=7860
) |