Spaces:
Sleeping
Sleeping
File size: 23,482 Bytes
d60565b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import gradio as gr
import json
import os
import logging
import requests
import re
import numpy as np
import pandas as pd
from datetime import datetime
import time
from typing import Dict, List, Tuple, Optional
import tempfile
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Anthropic API key
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY", "")
# Try to import SpeechBrain and HuggingFace components
try:
from speechbrain.pretrained import EncoderDecoderASR, VAD, EncoderClassifier
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
SPEECHBRAIN_AVAILABLE = True
HUGGINGFACE_AVAILABLE = True
logger.info("SpeechBrain and HuggingFace models available")
except ImportError as e:
logger.warning(f"SpeechBrain/HuggingFace not available: {e}")
SPEECHBRAIN_AVAILABLE = False
HUGGINGFACE_AVAILABLE = False
# Initialize models if available
asr_model = None
vad_model = None
sentiment_model = None
emotion_model = None
if SPEECHBRAIN_AVAILABLE and HUGGINGFACE_AVAILABLE:
try:
# Speech-to-text model
asr_model = EncoderDecoderASR.from_hparams(
source="speechbrain/asr-crdnn-rnnlm-librispeech",
savedir="pretrained_models/asr-crdnn-rnnlm-librispeech"
)
# Voice Activity Detection
vad_model = VAD.from_hparams(
source="speechbrain/vad-crdnn-libriparty",
savedir="pretrained_models/vad-crdnn-libriparty"
)
# Sentiment analysis
sentiment_model = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
return_all_scores=True
)
# Emotion analysis
emotion_model = pipeline(
"text-classification",
model="j-hartmann/emotion-english-distilroberta-base",
return_all_scores=True
)
logger.info("All models loaded successfully")
except Exception as e:
logger.error(f"Error loading models: {e}")
SPEECHBRAIN_AVAILABLE = False
HUGGINGFACE_AVAILABLE = False
def call_claude_api(prompt):
"""Call Claude API directly"""
if not ANTHROPIC_API_KEY:
return "β Claude API key not configured. Please set ANTHROPIC_API_KEY environment variable."
try:
headers = {
"Content-Type": "application/json",
"x-api-key": ANTHROPIC_API_KEY,
"anthropic-version": "2023-06-01"
}
data = {
"model": "claude-3-5-sonnet-20241022",
"max_tokens": 4096,
"messages": [
{
"role": "user",
"content": prompt
}
]
}
response = requests.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=data,
timeout=60
)
if response.status_code == 200:
response_json = response.json()
return response_json['content'][0]['text']
else:
logger.error(f"Claude API error: {response.status_code} - {response.text}")
return f"β Claude API Error: {response.status_code}"
except Exception as e:
logger.error(f"Error calling Claude API: {str(e)}")
return f"β Error: {str(e)}"
def transcribe_audio_with_metadata(audio_file):
"""Transcribe audio with timestamps, sentiment, and metadata"""
if not audio_file:
return None, "No audio file provided"
if not SPEECHBRAIN_AVAILABLE:
return None, "SpeechBrain not available - using demo transcription"
try:
# Get transcription with timestamps
transcript = asr_model.transcribe_file(audio_file)
# Split into sentences for analysis
sentences = re.split(r'[.!?]+', transcript)
sentences = [s.strip() for s in sentences if s.strip()]
# Analyze each sentence
rich_transcript = []
current_time = 0
for i, sentence in enumerate(sentences):
# Estimate timestamp (rough approximation)
timestamp = current_time + (i * 2) # Assume ~2 seconds per sentence
# Sentiment analysis
sentiment_result = sentiment_model(sentence)[0] if sentiment_model else None
sentiment = max(sentiment_result, key=lambda x: x['score']) if sentiment_result else {'label': 'neutral', 'score': 0.5}
# Emotion analysis
emotion_result = emotion_model(sentence)[0] if emotion_model else None
emotion = max(emotion_result, key=lambda x: x['score']) if emotion_result else {'label': 'neutral', 'score': 0.5}
# Word count and complexity metrics
words = sentence.split()
word_count = len(words)
avg_word_length = np.mean([len(word) for word in words]) if words else 0
# Calculate speech rate (words per minute estimate)
speech_rate = word_count * 30 / 60 # Rough estimate
rich_transcript.append({
'timestamp': timestamp,
'sentence': sentence,
'word_count': word_count,
'avg_word_length': round(avg_word_length, 2),
'speech_rate_wpm': round(speech_rate, 1),
'sentiment': sentiment['label'],
'sentiment_score': round(sentiment['score'], 3),
'emotion': emotion['label'],
'emotion_score': round(emotion['score'], 3)
})
current_time = timestamp
return rich_transcript, "Transcription completed successfully"
except Exception as e:
logger.error(f"Error in transcription: {e}")
return None, f"Transcription error: {str(e)}"
def format_rich_transcript(rich_transcript):
"""Format rich transcript for display"""
if not rich_transcript:
return "No transcript data available"
formatted_lines = []
for entry in rich_transcript:
timestamp_str = f"{int(entry['timestamp']//60):02d}:{int(entry['timestamp']%60):02d}"
line = f"[{timestamp_str}] *PAR: {entry['sentence']}"
line += f" [Words: {entry['word_count']}, Rate: {entry['speech_rate_wpm']}wpm]"
line += f" [Sentiment: {entry['sentiment']} ({entry['sentiment_score']})]"
line += f" [Emotion: {entry['emotion']} ({entry['emotion_score']})]"
formatted_lines.append(line)
return '\n'.join(formatted_lines)
def calculate_slp_metrics(rich_transcript):
"""Calculate comprehensive SLP metrics"""
if not rich_transcript:
return {}
# Basic metrics
total_sentences = len(rich_transcript)
total_words = sum(entry['word_count'] for entry in rich_transcript)
total_duration = rich_transcript[-1]['timestamp'] if rich_transcript else 0
# Word-level analysis
all_words = []
for entry in rich_transcript:
words = entry['sentence'].lower().split()
all_words.extend(words)
# Word frequency distribution
word_freq = {}
for word in all_words:
word_clean = re.sub(r'[^\w\s]', '', word)
if word_clean:
word_freq[word_clean] = word_freq.get(word_clean, 0) + 1
# Vocabulary diversity (Type-Token Ratio)
unique_words = len(set(all_words))
ttr = unique_words / total_words if total_words > 0 else 0
# Speech rate analysis
speech_rates = [entry['speech_rate_wpm'] for entry in rich_transcript]
avg_speech_rate = np.mean(speech_rates) if speech_rates else 0
# Sentiment analysis
sentiment_counts = {}
emotion_counts = {}
for entry in rich_transcript:
sentiment_counts[entry['sentiment']] = sentiment_counts.get(entry['sentiment'], 0) + 1
emotion_counts[entry['emotion']] = emotion_counts.get(entry['emotion'], 0) + 1
# Sentence complexity
sentence_lengths = [entry['word_count'] for entry in rich_transcript]
avg_sentence_length = np.mean(sentence_lengths) if sentence_lengths else 0
# Pause analysis (gaps between sentences)
pauses = []
for i in range(1, len(rich_transcript)):
pause = rich_transcript[i]['timestamp'] - rich_transcript[i-1]['timestamp']
pauses.append(pause)
avg_pause_duration = np.mean(pauses) if pauses else 0
return {
'total_sentences': total_sentences,
'total_words': total_words,
'total_duration_seconds': total_duration,
'unique_words': unique_words,
'type_token_ratio': round(ttr, 3),
'avg_sentence_length': round(avg_sentence_length, 1),
'avg_speech_rate_wpm': round(avg_speech_rate, 1),
'avg_pause_duration': round(avg_pause_duration, 1),
'sentiment_distribution': sentiment_counts,
'emotion_distribution': emotion_counts,
'word_frequency': dict(sorted(word_freq.items(), key=lambda x: x[1], reverse=True)[:20]),
'speech_rate_variability': round(np.std(speech_rates), 1) if speech_rates else 0
}
def generate_slp_analysis_prompt(rich_transcript, metrics, age, gender, slp_notes=""):
"""Generate comprehensive SLP analysis prompt"""
# Format metrics for the prompt
metrics_text = f"""
TRANSCRIPT METRICS:
- Total sentences: {metrics['total_sentences']}
- Total words: {metrics['total_words']}
- Duration: {metrics['total_duration_seconds']:.1f} seconds
- Type-Token Ratio: {metrics['type_token_ratio']} (vocabulary diversity)
- Average sentence length: {metrics['avg_sentence_length']} words
- Average speech rate: {metrics['avg_speech_rate_wpm']} words per minute
- Speech rate variability: {metrics['speech_rate_variability']} wpm
- Average pause duration: {metrics['avg_pause_duration']:.1f} seconds
SENTIMENT DISTRIBUTION: {metrics['sentiment_distribution']}
EMOTION DISTRIBUTION: {metrics['emotion_distribution']}
MOST FREQUENT WORDS: {list(metrics['word_frequency'].keys())[:10]}
"""
# Format rich transcript for analysis
transcript_text = format_rich_transcript(rich_transcript)
notes_section = f"\nSLP CLINICAL NOTES:\n{slp_notes}" if slp_notes else ""
prompt = f"""
You are a speech-language pathologist conducting a comprehensive analysis of a speech transcript with rich metadata.
PATIENT: {age}-year-old {gender}
{metrics_text}
TRANSCRIPT WITH METADATA:
{transcript_text}{notes_section}
Please provide a comprehensive analysis including:
1. SPEECH FLUENCY ANALYSIS:
- Speech rate patterns and variability
- Pause patterns and their significance
- Overall fluency assessment
2. LANGUAGE COMPLEXITY:
- Vocabulary diversity and word frequency patterns
- Sentence structure and complexity
- Language development level assessment
3. EMOTIONAL AND AFFECTIVE ANALYSIS:
- Sentiment patterns throughout the transcript
- Emotional expression and regulation
- Impact on communication effectiveness
4. SPEECH FACTORS:
- Word retrieval patterns
- Grammatical accuracy
- Repetitions and revisions
5. CLINICAL IMPLICATIONS:
- Specific intervention targets
- Strengths and areas for improvement
- Recommendations for therapy
6. COMPREHENSIVE SUMMARY:
- Overall communication profile
- Developmental appropriateness
- Prognosis and treatment priorities
Use the quantitative metrics and qualitative observations to support your analysis.
"""
return prompt
def analyze_rich_transcript(rich_transcript, age, gender, slp_notes=""):
"""Analyze rich transcript with comprehensive metrics"""
if not rich_transcript:
return "No transcript data available for analysis."
# Calculate SLP metrics
metrics = calculate_slp_metrics(rich_transcript)
# Generate analysis prompt
prompt = generate_slp_analysis_prompt(rich_transcript, metrics, age, gender, slp_notes)
# Get analysis from Claude API
if ANTHROPIC_API_KEY:
result = call_claude_api(prompt)
else:
result = generate_demo_analysis(rich_transcript, metrics)
return result
def generate_demo_analysis(rich_transcript, metrics):
"""Generate demo analysis when API is not available"""
return f"""## Comprehensive SLP Analysis
### SPEECH FLUENCY ANALYSIS
**Speech Rate**: {metrics['avg_speech_rate_wpm']} words per minute (variability: {metrics['speech_rate_variability']} wpm)
- Speech rate appears {'within normal limits' if 120 <= metrics['avg_speech_rate_wpm'] <= 180 else 'below typical range' if metrics['avg_speech_rate_wpm'] < 120 else 'above typical range'}
- Variability suggests {'consistent' if metrics['speech_rate_variability'] < 20 else 'variable'} speech patterns
**Pause Analysis**: Average pause duration of {metrics['avg_pause_duration']:.1f} seconds
- {'Appropriate' if 0.5 <= metrics['avg_pause_duration'] <= 2.0 else 'Short' if metrics['avg_pause_duration'] < 0.5 else 'Long'} pauses between utterances
### LANGUAGE COMPLEXITY
**Vocabulary Diversity**: Type-Token Ratio of {metrics['type_token_ratio']}
- {'Good' if metrics['type_token_ratio'] > 0.4 else 'Limited' if metrics['type_token_ratio'] < 0.3 else 'Moderate'} vocabulary diversity
**Sentence Structure**: Average {metrics['avg_sentence_length']} words per sentence
- Sentence length appears {'age-appropriate' if 5 <= metrics['avg_sentence_length'] <= 12 else 'below age expectations' if metrics['avg_sentence_length'] < 5 else 'above age expectations'}
**Most Frequent Words**: {', '.join(list(metrics['word_frequency'].keys())[:5])}
### EMOTIONAL AND AFFECTIVE ANALYSIS
**Sentiment Distribution**: {metrics['sentiment_distribution']}
**Emotion Distribution**: {metrics['emotion_distribution']}
### CLINICAL IMPLICATIONS
Based on the quantitative analysis, this patient shows:
- {'Good' if metrics['type_token_ratio'] > 0.4 else 'Limited'} vocabulary diversity
- {'Appropriate' if 120 <= metrics['avg_speech_rate_wpm'] <= 180 else 'Atypical'} speech rate
- {'Consistent' if metrics['speech_rate_variability'] < 20 else 'Variable'} speech patterns
### RECOMMENDATIONS
1. Focus on vocabulary expansion if TTR < 0.4
2. Address speech rate if outside normal range
3. Work on sentence complexity if below age expectations
4. Consider emotional regulation strategies based on sentiment patterns"""
def create_enhanced_interface():
"""Create the enhanced Gradio interface"""
with gr.Blocks(title="Enhanced CASL Analysis Tool", theme=gr.themes.Soft()) as app:
gr.Markdown("# π£οΈ Enhanced CASL Analysis Tool")
gr.Markdown("Advanced speech analysis with sentiment, timestamps, and comprehensive SLP metrics")
with gr.Tabs():
# Audio Upload & Transcription Tab
with gr.Tab("π€ Audio Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Audio Upload")
audio_input = gr.Audio(
type="filepath",
label="Upload Audio Recording"
)
transcribe_btn = gr.Button(
"π€ Transcribe & Analyze",
variant="primary",
size="lg"
)
transcription_status = gr.Markdown("")
with gr.Column(scale=2):
gr.Markdown("### Rich Transcript")
rich_transcript_display = gr.Textbox(
label="Transcription with Timestamps & Sentiment",
lines=15,
max_lines=20
)
# Analysis Tab
with gr.Tab("π Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Patient Information")
with gr.Row():
age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
slp_notes = gr.Textbox(
label="SLP Clinical Notes (Optional)",
placeholder="Enter additional clinical observations...",
lines=3
)
analyze_btn = gr.Button(
"π Analyze Transcript",
variant="primary",
size="lg"
)
with gr.Column(scale=2):
gr.Markdown("### Comprehensive Analysis")
analysis_output = gr.Textbox(
label="SLP Analysis Report",
lines=25,
max_lines=30
)
# Metrics Tab
with gr.Tab("π Metrics Dashboard"):
with gr.Row():
with gr.Column():
gr.Markdown("### Quantitative Metrics")
metrics_display = gr.JSON(
label="SLP Metrics",
interactive=False
)
with gr.Column():
gr.Markdown("### Word Frequency")
word_freq_display = gr.Dataframe(
headers=["Word", "Frequency"],
label="Most Frequent Words",
interactive=False
)
# Event handlers
def on_transcribe(audio_file):
"""Handle audio transcription"""
if not audio_file:
return "", "Please upload an audio file first."
rich_transcript, status = transcribe_audio_with_metadata(audio_file)
if rich_transcript:
formatted = format_rich_transcript(rich_transcript)
return formatted, status
else:
return "", status
def on_analyze(rich_transcript_text, age_val, gender_val, notes):
"""Handle analysis"""
# Convert formatted text back to rich transcript structure
# This is a simplified version - in practice you'd want to store the rich data
if not rich_transcript_text or rich_transcript_text == "No transcript data available":
return "Please transcribe audio first."
# For demo purposes, create a simple rich transcript from the text
lines = rich_transcript_text.split('\n')
rich_transcript = []
for i, line in enumerate(lines):
if line.strip():
# Extract sentence from the line
sentence_match = re.search(r'\*PAR: (.+?)(?=\s*\[|$)', line)
if sentence_match:
sentence = sentence_match.group(1).strip()
rich_transcript.append({
'timestamp': i * 2,
'sentence': sentence,
'word_count': len(sentence.split()),
'avg_word_length': np.mean([len(word) for word in sentence.split()]) if sentence.split() else 0,
'speech_rate_wpm': 120.0,
'sentiment': 'neutral',
'sentiment_score': 0.5,
'emotion': 'neutral',
'emotion_score': 0.5
})
return analyze_rich_transcript(rich_transcript, age_val, gender_val, notes)
def update_metrics(rich_transcript_text):
"""Update metrics display"""
if not rich_transcript_text or rich_transcript_text == "No transcript data available":
return {}, []
# Convert text back to rich transcript (simplified)
lines = rich_transcript_text.split('\n')
rich_transcript = []
for i, line in enumerate(lines):
if line.strip():
sentence_match = re.search(r'\*PAR: (.+?)(?=\s*\[|$)', line)
if sentence_match:
sentence = sentence_match.group(1).strip()
rich_transcript.append({
'timestamp': i * 2,
'sentence': sentence,
'word_count': len(sentence.split()),
'avg_word_length': np.mean([len(word) for word in sentence.split()]) if sentence.split() else 0,
'speech_rate_wpm': 120.0,
'sentiment': 'neutral',
'sentiment_score': 0.5,
'emotion': 'neutral',
'emotion_score': 0.5
})
metrics = calculate_slp_metrics(rich_transcript)
# Create word frequency dataframe
word_freq_data = [[word, freq] for word, freq in list(metrics['word_frequency'].items())[:20]]
return metrics, word_freq_data
# Connect event handlers
transcribe_btn.click(
on_transcribe,
inputs=[audio_input],
outputs=[rich_transcript_display, transcription_status]
)
analyze_btn.click(
on_analyze,
inputs=[rich_transcript_display, age, gender, slp_notes],
outputs=[analysis_output]
)
# Update metrics when transcript changes
rich_transcript_display.change(
update_metrics,
inputs=[rich_transcript_display],
outputs=[metrics_display, word_freq_display]
)
return app
if __name__ == "__main__":
print("π Starting Enhanced CASL Analysis Tool...")
if not ANTHROPIC_API_KEY:
print("β οΈ ANTHROPIC_API_KEY not configured - analysis will show demo response")
print(" For HuggingFace Spaces: Add ANTHROPIC_API_KEY as a secret in your space settings")
print(" For local use: export ANTHROPIC_API_KEY='your-key-here'")
else:
print("β
Claude API configured")
if not SPEECHBRAIN_AVAILABLE:
print("β οΈ SpeechBrain not available - audio transcription will use demo mode")
print(" Install with: pip install speechbrain transformers torch")
else:
print("β
SpeechBrain and HuggingFace models loaded")
app = create_enhanced_interface()
app.launch(show_api=False) |