Spaces:
Sleeping
Sleeping
File size: 110,729 Bytes
1ac2b98 d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 61a4c2a d8e9860 d66b701 d8e9860 61a4c2a d66b701 61a4c2a d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 61a4c2a d8e9860 d66b701 d8e9860 d66b701 d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 61a4c2a d8e9860 f0758ec d8e9860 f0758ec d8e9860 f0758ec d8e9860 f0758ec d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 d66b701 d8e9860 b206e1d 61a4c2a d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 b206e1d d8e9860 7a9920b d8e9860 61a4c2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 |
import gradio as gr
import boto3
import json
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import re
import logging
import os
import pickle
import csv
from PIL import Image
import io
import uuid
from datetime import datetime
import tempfile
import time
# Try to import ReportLab (needed for PDF generation)
try:
from reportlab.lib.pagesizes import letter
from reportlab.lib import colors
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
REPORTLAB_AVAILABLE = True
except ImportError:
logger = logging.getLogger(__name__)
logger.warning("ReportLab library not available - PDF export will be disabled")
REPORTLAB_AVAILABLE = False
# Try to import PyPDF2 (needed for PDF reading)
try:
import PyPDF2
PYPDF2_AVAILABLE = True
except ImportError:
logger = logging.getLogger(__name__)
logger.warning("PyPDF2 library not available - PDF reading will be disabled")
PYPDF2_AVAILABLE = False
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# AWS credentials for Bedrock API
# For HuggingFace Spaces, set these as secrets in the Space settings
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY", "")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY", "")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
# Initialize AWS clients if credentials are available
bedrock_client = None
transcribe_client = None
s3_client = None
if AWS_ACCESS_KEY and AWS_SECRET_KEY:
try:
# Initialize Bedrock client for AI analysis
bedrock_client = boto3.client(
'bedrock-runtime',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
logger.info("Bedrock client initialized successfully")
# Initialize Transcribe client for speech-to-text
transcribe_client = boto3.client(
'transcribe',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
logger.info("Transcribe client initialized successfully")
# Initialize S3 client for storing audio files
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
logger.info("S3 client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize AWS clients: {str(e)}")
# S3 bucket for storing audio files
S3_BUCKET = os.environ.get("S3_BUCKET", "casl-audio-files")
S3_PREFIX = "transcribe-audio/"
# Sample transcript for the demo
SAMPLE_TRANSCRIPT = """*PAR: today I would &-um like to talk about &-um a fun trip I took last &-um summer with my family.
*PAR: we went to the &-um &-um beach [//] no to the mountains [//] I mean the beach actually.
*PAR: there was lots of &-um &-um swimming and &-um sun.
*PAR: we [/] we stayed for &-um three no [//] four days in a &-um hotel near the water [: ocean] [*].
*PAR: my favorite part was &-um building &-um castles with sand.
*PAR: sometimes I forget [//] forgetted [: forgot] [*] what they call those things we built.
*PAR: my brother he [//] he helped me dig a big hole.
*PAR: we saw [/] saw fishies [: fish] [*] swimming in the water.
*PAR: sometimes I wonder [/] wonder where fishies [: fish] [*] go when it's cold.
*PAR: maybe they have [/] have houses under the water.
*PAR: after swimming we [//] I eat [: ate] [*] &-um ice cream with &-um chocolate things on top.
*PAR: what do you call those &-um &-um sprinkles! that's the word.
*PAR: my mom said to &-um that I could have &-um two scoops next time.
*PAR: I want to go back to the beach [/] beach next year."""
# ===============================
# Database and Storage Functions
# ===============================
# Create data directories if they don't exist
DATA_DIR = os.environ.get("DATA_DIR", "patient_data")
RECORDS_FILE = os.path.join(DATA_DIR, "patient_records.csv")
ANALYSES_DIR = os.path.join(DATA_DIR, "analyses")
DOWNLOADS_DIR = os.path.join(DATA_DIR, "downloads")
AUDIO_DIR = os.path.join(DATA_DIR, "audio")
def ensure_data_dirs():
"""Ensure data directories exist"""
global DOWNLOADS_DIR, AUDIO_DIR
try:
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(ANALYSES_DIR, exist_ok=True)
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
os.makedirs(AUDIO_DIR, exist_ok=True)
logger.info(f"Data directories created: {DATA_DIR}, {ANALYSES_DIR}, {DOWNLOADS_DIR}, {AUDIO_DIR}")
# Create records file if it doesn't exist
if not os.path.exists(RECORDS_FILE):
with open(RECORDS_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow([
"ID", "Name", "Record ID", "Age", "Gender",
"Assessment Date", "Clinician", "Analysis Date", "File Path"
])
except Exception as e:
logger.warning(f"Could not create data directories: {str(e)}")
# Fallback to tmp directory on HF Spaces
DOWNLOADS_DIR = os.path.join(tempfile.gettempdir(), "casl_downloads")
AUDIO_DIR = os.path.join(tempfile.gettempdir(), "casl_audio")
os.makedirs(DOWNLOADS_DIR, exist_ok=True)
os.makedirs(AUDIO_DIR, exist_ok=True)
logger.info(f"Using fallback directories: {DOWNLOADS_DIR}, {AUDIO_DIR}")
# Initialize data directories
ensure_data_dirs()
def save_patient_record(patient_info, analysis_results, transcript):
"""Save patient record to storage"""
try:
# Generate unique ID for the record
record_id = str(uuid.uuid4())
# Extract patient information
name = patient_info.get("name", "")
patient_id = patient_info.get("record_id", "")
age = patient_info.get("age", "")
gender = patient_info.get("gender", "")
assessment_date = patient_info.get("assessment_date", "")
clinician = patient_info.get("clinician", "")
# Create filename for the analysis data
filename = f"analysis_{record_id}.pkl"
filepath = os.path.join(ANALYSES_DIR, filename)
# Save analysis data
with open(filepath, 'wb') as f:
pickle.dump({
"patient_info": patient_info,
"analysis_results": analysis_results,
"transcript": transcript,
"timestamp": datetime.now().isoformat(),
}, f)
# Add record to CSV file
with open(RECORDS_FILE, 'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([
record_id, name, patient_id, age, gender,
assessment_date, clinician, datetime.now().strftime('%Y-%m-%d'),
filepath
])
return record_id
except Exception as e:
logger.error(f"Error saving patient record: {str(e)}")
return None
def load_patient_record(record_id):
"""Load patient record from storage"""
try:
# Find the record in the CSV file
if not os.path.exists(RECORDS_FILE):
logger.error(f"Records file does not exist: {RECORDS_FILE}")
return None
with open(RECORDS_FILE, 'r', newline='') as f:
reader = csv.reader(f)
next(reader) # Skip header
for row in reader:
if len(row) < 9: # Ensure row has enough elements
logger.warning(f"Skipping malformed record row: {row}")
continue
if row[0] == record_id:
file_path = row[8]
# Check if the file exists
if not os.path.exists(file_path):
logger.error(f"Analysis file not found: {file_path}")
return None
# Load and return the data
try:
with open(file_path, 'rb') as f:
return pickle.load(f)
except (pickle.PickleError, EOFError) as pickle_err:
logger.error(f"Error unpickling file {file_path}: {str(pickle_err)}")
return None
logger.warning(f"Record ID not found: {record_id}")
return None
except Exception as e:
logger.error(f"Error loading patient record: {str(e)}")
return None
def get_all_patient_records():
"""Return a list of all patient records"""
try:
records = []
# Ensure data directories exist
ensure_data_dirs()
if not os.path.exists(RECORDS_FILE):
logger.warning(f"Records file does not exist, creating it: {RECORDS_FILE}")
with open(RECORDS_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow([
"ID", "Name", "Record ID", "Age", "Gender",
"Assessment Date", "Clinician", "Analysis Date", "File Path"
])
return records
# Read existing records
valid_records = []
with open(RECORDS_FILE, 'r', newline='') as f:
reader = csv.reader(f)
next(reader) # Skip header
for row in reader:
if len(row) < 9: # Check for malformed rows
continue
# Check if the analysis file exists
file_path = row[8]
file_exists = os.path.exists(file_path)
record = {
"id": row[0],
"name": row[1],
"record_id": row[2],
"age": row[3],
"gender": row[4],
"assessment_date": row[5],
"clinician": row[6],
"analysis_date": row[7],
"file_path": file_path,
"status": "Valid" if file_exists else "Missing File"
}
records.append(record)
# Keep track of valid records for potential cleanup
if file_exists:
valid_records.append(row)
# If we found invalid records, consider rewriting the CSV with only valid entries
if len(valid_records) < len(records):
logger.warning(f"Found {len(records) - len(valid_records)} invalid records")
# Uncomment to enable automatic cleanup:
# with open(RECORDS_FILE, 'w', newline='') as f:
# writer = csv.writer(f)
# writer.writerow([
# "ID", "Name", "Record ID", "Age", "Gender",
# "Assessment Date", "Clinician", "Analysis Date", "File Path"
# ])
# for row in valid_records:
# writer.writerow(row)
return records
except Exception as e:
logger.error(f"Error getting patient records: {str(e)}")
return []
def delete_patient_record(record_id):
"""Delete a patient record"""
try:
if not os.path.exists(RECORDS_FILE):
return False
# Find the record and its file
file_path = None
with open(RECORDS_FILE, 'r', newline='') as f:
reader = csv.reader(f)
rows = list(reader)
header = rows[0]
for i, row in enumerate(rows[1:], 1):
if len(row) < 9:
continue
if row[0] == record_id:
file_path = row[8]
break
if not file_path:
return False
# Delete the analysis file if it exists
if os.path.exists(file_path):
os.remove(file_path)
# Remove the record from the CSV
rows_to_keep = [row for row in rows[1:] if len(row) >= 9 and row[0] != record_id]
with open(RECORDS_FILE, 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(header)
writer.writerows(rows_to_keep)
return True
except Exception as e:
logger.error(f"Error deleting patient record: {str(e)}")
return False
# ===============================
# Utility Functions
# ===============================
def read_pdf(file_path):
"""Read text from a PDF file"""
if not PYPDF2_AVAILABLE:
return "Error: PDF reading is not available - PyPDF2 library is not installed"
try:
with open(file_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
return text
except Exception as e:
logger.error(f"Error reading PDF: {str(e)}")
return ""
def read_cha_file(file_path):
"""Read and parse a .cha transcript file"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
# Extract participant lines (starting with *PAR:)
par_lines = []
for line in content.splitlines():
if line.startswith('*PAR:'):
par_lines.append(line)
# If no PAR lines found, just return the whole content
if not par_lines:
return content
return '\n'.join(par_lines)
except Exception as e:
logger.error(f"Error reading CHA file: {str(e)}")
return ""
def process_upload(file):
"""Process an uploaded file (PDF, text, or CHA)"""
if file is None:
return ""
file_path = file.name
if file_path.endswith('.pdf'):
if PYPDF2_AVAILABLE:
return read_pdf(file_path)
else:
return "Error: PDF reading is disabled - PyPDF2 library is not installed"
elif file_path.endswith('.cha'):
return read_cha_file(file_path)
else:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
return f.read()
# ===============================
# AI Model Interface Functions
# ===============================
def call_bedrock(prompt, max_tokens=4096):
"""Call the AWS Bedrock API to analyze text using Claude"""
if not bedrock_client:
return "AWS credentials not configured. Please set your AWS credentials as secrets in the Space settings."
try:
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": max_tokens,
"messages": [
{
"role": "user",
"content": prompt
}
],
"temperature": 0.3,
"top_p": 0.9
})
modelId = 'anthropic.claude-3-sonnet-20240229-v1:0'
response = bedrock_client.invoke_model(
body=body,
modelId=modelId,
accept='application/json',
contentType='application/json'
)
response_body = json.loads(response.get('body').read())
return response_body['content'][0]['text']
except Exception as e:
logger.error(f"Error in call_bedrock: {str(e)}")
return f"Error: {str(e)}"
def generate_demo_response(prompt):
"""Generate a simulated response for demo purposes"""
# This function generates a realistic but fake response for demo purposes
# In a real deployment, you would call an actual LLM API
random_seed = sum(ord(c) for c in prompt) % 1000 # Generate a seed based on prompt
np.random.seed(random_seed)
# Simulate speech factors with random but reasonable values
factors = [
"Difficulty producing fluent speech",
"Word retrieval issues",
"Grammatical errors",
"Repetitions and revisions",
"Neologisms",
"Perseveration",
"Comprehension issues"
]
occurrences = np.random.randint(1, 15, size=len(factors))
percentiles = np.random.randint(30, 95, size=len(factors))
# Simulate CASL scores
domains = ["Lexical/Semantic", "Syntactic", "Supralinguistic"]
scores = np.random.randint(80, 115, size=3)
percentiles_casl = [int(np.interp(s, [70, 85, 100, 115, 130], [2, 16, 50, 84, 98])) for s in scores]
perf_levels = []
for s in scores:
if s < 70: perf_levels.append("Well Below Average")
elif s < 85: perf_levels.append("Below Average")
elif s < 115: perf_levels.append("Average")
elif s < 130: perf_levels.append("Above Average")
else: perf_levels.append("Well Above Average")
# Build response
response = "## Speech Factor Analysis\n\n"
for i, factor in enumerate(factors):
response += f"{factor}: {occurrences[i]}, {percentiles[i]}\n"
response += "\n## CASL-2 Assessment\n\n"
for i, domain in enumerate(domains):
response += f"{domain} Skills: Standard Score ({scores[i]}), Percentile Rank ({percentiles_casl[i]}%), Performance Level ({perf_levels[i]})\n"
response += "\n## Other analysis/Best plans of action:\n\n"
suggestions = [
"Implement word-finding strategies with semantic cuing",
"Practice structured narrative tasks with visual supports",
"Use sentence formulation exercises with increasing complexity",
"Incorporate self-monitoring techniques during structured conversations",
"Work on grammatical forms through structured practice"
]
for suggestion in suggestions:
response += f"- {suggestion}\n"
response += "\n## Explanation:\n\n"
response += "Based on the analysis, this patient demonstrates moderate word-finding difficulties with compensatory strategies like filler words and repetitions. Their syntactic skills show some weakness in verb tense consistency. Treatment should focus on building vocabulary access, grammatical accuracy, and narrative structure using scaffolded support.\n"
response += "\n## Additional Analysis:\n\n"
response += "The patient shows relative strengths in conversation maintenance and topic coherence. Consider building on these strengths while addressing specific language formulation challenges. Recommended frequency: 2-3 sessions per week for 10-12 weeks with periodic reassessment."
return response
def generate_demo_transcription():
"""Generate a simulated transcription response"""
return """*PAR: today I want to tell you about my favorite toy.
*PAR: it's a &-um teddy bear that I got for my birthday.
*PAR: he has &-um brown fur and a red bow.
*PAR: I like to sleep with him every night.
*PAR: sometimes I take him to school in my backpack.
*INV: what's your teddy bear's name?
*PAR: his name is &-um Brownie because he's brown."""
def generate_demo_qa_response(question):
"""Generate a simulated Q&A response"""
qa_responses = {
"what is casl": "CASL-2 (Comprehensive Assessment of Spoken Language, Second Edition) is a standardized assessment tool used by Speech-Language Pathologists to evaluate a child's oral language abilities across multiple domains including lexical/semantic, syntactic, and supralinguistic skills. It helps identify language disorders and guides intervention planning.",
"how do i interpret scores": "CASL-2 scores include standard scores (mean=100, SD=15), percentile ranks, and performance levels. Standard scores below 85 indicate below average performance, 85-115 is average, and above 115 is above average. Percentile ranks show how a child performs relative to same-age peers.",
"what activities help word finding": "Activities to improve word-finding skills include semantic feature analysis (describing attributes of objects), categorization tasks, word association games, rapid naming practice, and structured conversation with gentle cueing. Visual supports and semantic mapping can also be helpful.",
"how often should therapy occur": "The recommended frequency for speech-language therapy typically ranges from 1-3 sessions per week, depending on the severity of the impairment. For moderate difficulties, twice weekly sessions of 30-45 minutes are common. Consistency is important for progress.",
"when should i reassess": "Reassessment is typically recommended every 3-6 months to track progress and adjust treatment goals. For educational settings, annual reassessment is common. More frequent informal assessments can help guide ongoing intervention.",
}
# Simple keyword matching for demo purposes
for key, response in qa_responses.items():
if key in question.lower():
return response
return "I don't have specific information about that topic. For detailed professional guidance, consult with a licensed Speech-Language Pathologist who can provide advice specific to your situation."
# ===============================
# Analysis Functions
# ===============================
def parse_casl_response(response):
"""Parse the LLM response for CASL analysis into structured data"""
lines = response.split('\n')
data = {
'Factor': [],
'Occurrences': [],
'Severity': [],
'Examples': [] # Added field for error examples
}
casl_data = {
'Domain': ['Lexical/Semantic', 'Syntactic', 'Supralinguistic'],
'Standard Score': [0, 0, 0],
'Percentile': [0, 0, 0],
'Performance Level': ['', '', ''],
'Examples': ['', '', ''] # Added field for specific examples
}
treatment_suggestions = []
explanation = ""
additional_analysis = ""
specific_errors = {} # Track specific error examples by factor
raw_response = response # Store the complete raw LLM response
# Pattern to match factor lines - updated to potentially capture examples
factor_pattern = re.compile(r'([\w\s/]+):\s*(\d+)[,\s]+(\d+)(?:\s*-\s*(.+))?')
# Pattern to match CASL data
casl_pattern = re.compile(r'(\w+/?\w*)\s+Skills:\s+Standard\s+Score\s+\((\d+)\),\s+Percentile\s+Rank\s+\((\d+)%\),\s+Performance\s+Level\s+\(([\w\s]+)\)')
# Pattern to find examples
example_pattern = re.compile(r'(?:Example|Examples|observed|observed in)[^\"\'"]*[\"\']([^\"\']*)[\"\']')
error_pattern = re.compile(r'(?:error|errors|difficulty|difficulties)[^\"\'"]*[\"\']([^\"\']*)[\"\']')
current_factor = None
current_domain = None
in_suggestions = False
in_explanation = False
in_additional = False
in_examples = False
for i, line in enumerate(lines):
line = line.strip()
# Skip empty lines
if not line:
continue
# Check for factor data
factor_match = factor_pattern.search(line)
if factor_match:
factor = factor_match.group(1).strip()
occurrences = int(factor_match.group(2))
severity = int(factor_match.group(3))
example = factor_match.group(4) if factor_match.group(4) else ""
# Look ahead to find examples for this factor
if not example:
# Check next few lines for examples
for j in range(i+1, min(i+5, len(lines))):
next_line = lines[j].strip()
if next_line and ('"' in next_line or "'" in next_line):
example_match = example_pattern.search(next_line)
if example_match:
example = example_match.group(1)
break
error_match = error_pattern.search(next_line)
if error_match:
example = error_match.group(1)
break
data['Factor'].append(factor)
data['Occurrences'].append(occurrences)
data['Severity'].append(severity)
data['Examples'].append(example)
specific_errors[factor] = example
current_factor = factor
continue
# Check for CASL data
casl_match = casl_pattern.search(line)
if casl_match:
domain = casl_match.group(1)
score = int(casl_match.group(2))
percentile = int(casl_match.group(3))
level = casl_match.group(4)
domain_examples = ""
# Look ahead for examples related to this domain
for j in range(i+1, min(i+10, len(lines))):
next_line = lines[j].strip()
if "Domain:" in next_line or casl_pattern.search(next_line):
break
if ('"' in next_line or "'" in next_line) and "example" in next_line.lower():
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', next_line)
if example_match:
domain_examples = example_match.group(1)
break
if "Lexical" in domain:
casl_data['Standard Score'][0] = score
casl_data['Percentile'][0] = percentile
casl_data['Performance Level'][0] = level
casl_data['Examples'][0] = domain_examples
current_domain = "Lexical/Semantic"
elif "Syntactic" in domain:
casl_data['Standard Score'][1] = score
casl_data['Percentile'][1] = percentile
casl_data['Performance Level'][1] = level
casl_data['Examples'][1] = domain_examples
current_domain = "Syntactic"
elif "Supralinguistic" in domain:
casl_data['Standard Score'][2] = score
casl_data['Percentile'][2] = percentile
casl_data['Performance Level'][2] = level
casl_data['Examples'][2] = domain_examples
current_domain = "Supralinguistic"
continue
# Check for section headers
if "Other analysis/Best plans of action:" in line or "### Recommended Treatment Approaches" in line or "Treatment Recommendations:" in line:
in_suggestions = True
in_explanation = False
in_additional = False
in_examples = False
continue
elif "Explanation:" in line or "### Clinical Rationale" in line or "Clinical Rationale:" in line:
in_suggestions = False
in_explanation = True
in_additional = False
in_examples = False
continue
elif "Additional Analysis:" in line or "Further Observations:" in line:
in_suggestions = False
in_explanation = False
in_additional = True
in_examples = False
continue
elif "Examples:" in line or "Specific Errors:" in line:
in_suggestions = False
in_explanation = False
in_additional = False
in_examples = True
continue
# Add content to appropriate section
if in_suggestions:
if line.startswith("- "):
treatment_suggestions.append(line[2:]) # Remove the bullet point
elif line.startswith("•"):
treatment_suggestions.append(line[1:].strip()) # Remove bullet and trim
elif line and not line.startswith("#"):
# Non-empty, non-header lines might be treatment suggestions without bullets
treatment_suggestions.append(line)
elif in_explanation:
explanation += line + "\n"
elif in_additional:
additional_analysis += line + "\n"
elif in_examples and current_factor and not specific_errors.get(current_factor):
# Look for quoted examples in the examples section
if '"' in line or "'" in line:
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', line)
if example_match:
specific_errors[current_factor] = example_match.group(1)
# Update the examples in the dataframe
if current_factor in data['Factor']:
idx = data['Factor'].index(current_factor)
data['Examples'][idx] = example_match.group(1)
# Continuously look for examples with quotes regardless of section
if ('"' in line or "'" in line) and current_factor:
if re.search(rf'{current_factor}.*[\"\']([^\"\']*)[\"\']', line, re.IGNORECASE):
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', line)
if example_match:
specific_errors[current_factor] = example_match.group(1)
# Update in dataframe
if current_factor in data['Factor']:
idx = data['Factor'].index(current_factor)
data['Examples'][idx] = example_match.group(1)
# Process specific errors and examples if they're presented as a list later in the text
for i, line in enumerate(lines):
if "examples of errors" in line.lower() or "error examples" in line.lower():
# Look through next few lines for examples
for j in range(i+1, min(i+15, len(lines))):
example_line = lines[j].strip()
if not example_line or example_line.startswith("#"):
continue
# Look for factors mentioned with examples
for factor in data['Factor']:
if factor.lower() in example_line.lower() and ('"' in example_line or "'" in example_line):
example_match = re.search(r'[\"\']([^\"\']*)[\"\']', example_line)
if example_match:
idx = data['Factor'].index(factor)
data['Examples'][idx] = example_match.group(1)
specific_errors[factor] = example_match.group(1)
return {
'speech_factors': pd.DataFrame(data),
'casl_data': pd.DataFrame(casl_data),
'treatment_suggestions': treatment_suggestions,
'explanation': explanation,
'additional_analysis': additional_analysis,
'specific_errors': specific_errors,
'raw_response': raw_response # Include the full LLM response
}
def create_casl_plots(speech_factors, casl_data):
"""Create visualizations for the CASL analysis results"""
# Set a professional style for the plots
plt.style.use('seaborn-v0_8-pastel')
# Create figure with two subplots
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6), dpi=100)
# Plot speech factors - sorted by occurrence count
if not speech_factors.empty:
# Sort the dataframe
speech_factors_sorted = speech_factors.sort_values('Occurrences', ascending=False)
# Custom colors
speech_colors = ['#4C72B0', '#55A868', '#C44E52', '#8172B3', '#CCB974', '#64B5CD', '#4C72B0']
# Create horizontal bar chart
bars = ax1.barh(speech_factors_sorted['Factor'],
speech_factors_sorted['Occurrences'],
color=speech_colors[:len(speech_factors_sorted)])
# Add count labels at the end of each bar
for i, bar in enumerate(bars):
width = bar.get_width()
factor = speech_factors_sorted.iloc[i]['Factor']
# Get severity percentile for this factor
severity = speech_factors_sorted.iloc[i]['Severity']
# Label with both count and severity percentile
ax1.text(width + 0.3, bar.get_y() + bar.get_height()/2,
f'{width:.0f} ({severity}%)', ha='left', va='center')
# Add example as annotation if available
if 'Examples' in speech_factors_sorted.columns:
example = speech_factors_sorted.iloc[i]['Examples']
if example and len(example) > 0:
# Add a small marker to indicate example exists
ax1.text(0.5, bar.get_y() + bar.get_height()/2,
'★', ha='center', va='center', color='#C44E52',
fontsize=8, fontweight='bold')
ax1.set_title('Speech Factors Analysis', fontsize=14, fontweight='bold')
ax1.set_xlabel('Number of Occurrences', fontsize=11)
# No y-label needed for horizontal bar chart
# Remove top and right spines
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
# Add a footnote about the star symbol
ax1.annotate('★ = Example available in details panel', xy=(0, -0.1), xycoords='axes fraction',
fontsize=8, ha='left', va='center', color='#C44E52')
# Plot CASL domains
domain_names = casl_data['Domain']
y_scores = casl_data['Standard Score']
percentiles = casl_data['Percentile']
# Custom color scheme
casl_colors = ['#4C72B0', '#55A868', '#C44E52']
# Create bars with nice colors
bars = ax2.bar(domain_names, y_scores, color=casl_colors)
# Add score labels on top of each bar
for i, bar in enumerate(bars):
height = bar.get_height()
score = y_scores.iloc[i]
percentile = percentiles.iloc[i]
# Label with both score and percentile
ax2.text(bar.get_x() + bar.get_width()/2., height + 1,
f'{score:.0f} ({percentile}%)', ha='center', va='bottom')
# Add a star marker if example exists
if 'Examples' in casl_data.columns:
example = casl_data.iloc[i]['Examples']
if example and len(example) > 0:
ax2.text(bar.get_x() + bar.get_width()/2., height/2,
'★', ha='center', va='center', color='white',
fontsize=12, fontweight='bold')
# Add score reference lines
ax2.axhline(y=100, linestyle='--', color='gray', alpha=0.7, label='Average (100)')
ax2.axhline(y=85, linestyle=':', color='orange', alpha=0.7, label='Below Average (<85)')
ax2.axhline(y=115, linestyle=':', color='green', alpha=0.7, label='Above Average (>115)')
# Add labels and title
ax2.set_title('CASL-2 Standard Scores', fontsize=14, fontweight='bold')
ax2.set_ylabel('Standard Score', fontsize=11)
ax2.set_ylim(bottom=0, top=max(130, max(y_scores) + 15)) # Set y-axis limit with some padding
# Add legend
ax2.legend(loc='upper right', fontsize='small')
# Remove top and right spines
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
# Add overall figure title
fig.suptitle('Speech Analysis Results', fontsize=16, fontweight='bold', y=0.98)
# Add a subtitle with note about examples
plt.figtext(0.5, 0.01, '★ indicates specific examples available in the Error Examples panel',
ha='center', fontsize=9, fontstyle='italic')
plt.tight_layout(rect=[0, 0.03, 1, 0.95]) # Adjust layout to make room for suptitle
# Save plot to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close()
return buf
def create_casl_radar_chart(speech_factors):
"""Create a radar chart for speech factors (percentiles)"""
if speech_factors.empty or 'Severity' not in speech_factors.columns:
# Create a placeholder image if no data
plt.figure(figsize=(8, 8))
plt.text(0.5, 0.5, "No data available for radar chart",
ha='center', va='center', fontsize=14)
plt.axis('off')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
return buf
# Prepare data for radar chart
categories = speech_factors['Factor'].tolist()
percentiles = speech_factors['Severity'].tolist()
# Need to repeat first value to close the polygon
categories = categories + [categories[0]]
percentiles = percentiles + [percentiles[0]]
# Convert to radians and calculate points
N = len(categories) - 1 # Subtract 1 for the repeated point
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1] # Repeat the first angle to close the polygon
# Create the plot
fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, polar=True)
# Draw percentile lines with labels
plt.xticks(angles[:-1], categories[:-1], size=12)
ax.set_rlabel_position(0)
plt.yticks([20, 40, 60, 80, 100], ["20", "40", "60", "80", "100"], color="grey", size=10)
plt.ylim(0, 100)
# Plot data
ax.plot(angles, percentiles, linewidth=1, linestyle='solid', color='#4C72B0')
ax.fill(angles, percentiles, color='#4C72B0', alpha=0.25)
# Add title
plt.title('Speech Factors Severity (Percentile)', size=15, fontweight='bold', pad=20)
# Save to buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight')
buf.seek(0)
plt.close()
return buf
def analyze_transcript(transcript, age, gender):
"""Analyze a speech transcript using the CASL framework"""
# CHAT transcription symbol cheat sheet
cheat_sheet = """
CHAT TRANSCRIPTION SYMBOL SUMMARY -- Abridged for AphasiaBank
Basic Utterance Terminators
. period
? question
! exclamation
Special Utterance Terminators
+… trailing off
+..? trailing off of a question
+/. interruption by another speaker
+/? interruption of a question by another speaker
+//. self-interruption
+//? self-interruption of a question
+"/. quotation follows on next line
+" quoted utterance occurs on this line (use at beginning of utterance
as link, not a terminator)
+< lazy overlap marking (at beginning of utterance that overlapped the
the previous utterance)
@n neologism (e.g., sakov@n)
exclamations common ones: ah, aw, haha, ow, oy, sh, ugh, uhoh
interjections common ones: mhm, uhhuh, hm, uhuh
fillers common ones: &-um, &-uh
letters s@l
letter sequence abcdefg@k
xxx unintelligible speech, not treated as a word
www untranscribed material (e.g., looking through pictures, talking with
spouse), must be followed by %exp tier (see below)
&+sounds phonological fragment (&+sh &+w we came home)
Scoped Symbols
[: text] target/intended word for errors (e.g., tried [: cried])
[*] error (e.g., paraphasia -- wɛk@u [: wet] [*])
[/] retracing without correction (e.g., simple repetition)
put repeated items between <> unless only one word was repeated
[//] retracing with correction (e.g., simple word or grammar change)
put changed items between <> unless only one word was changed
"""
# Instructions for the LLM analysis
instructions = """
Advanced Linguistic Analysis Protocol for Adolescent Language Samples (Ages 14-18)
You are a highly specialized assistant supporting speech-language pathologists in conducting comprehensive linguistic analyses of adolescent language samples. Your analysis must adhere to evidence-based practice standards for secondary-level language assessment while producing results that inform both clinical decision-making and family understanding.
Initial Sample Assessment
1. Document sample metadata:
* Total number of utterances
* Sample collection context (conversational, narrative, expository, persuasive, procedural)
* Sample elicitation method (if indicated)
* Total duration/length of interaction
* Any transcription conventions used (e.g., SALT, CHAT)
2. Determine analysis approach:
* For samples with ≤50 utterances: Perform complete analysis on all utterances
* For samples >50 utterances: Perform complete analysis, then select 50 representative utterances that capture key patterns across all linguistic domains while maintaining the natural distribution of features
Utterance-Level Microanalysis
For each utterance, provide detailed linguistic breakdown including:
1. Structural Components
* Utterance number and full text (verbatim)
* Word count (excluding fillers, false starts, and repetitions)
* C-unit segmentation (when applicable)
* MLU in words and morphemes
* Syntactic classification:
* Simple, compound, complex, or compound-complex
* Complete or fragmentary
* Declarative, interrogative, imperative, or exclamatory
* Clausal density (number of clauses/utterance)
2. Syntactic Analysis
* Constituent structure identification:
* Subject and predicate components
* Noun phrases (including pre- and post-modification)
* Verb phrases (including auxiliaries, complements)
* Adverbial phrases and clauses (including position and function)
* Prepositional phrases (including syntactic role)
* Subordinate clauses (including type and function)
* Embedding depth and recursion patterns
* Syntactic movement and transformations
* Non-canonical structures (passives, clefts, etc.)
3. Morphological Analysis
* Bound morpheme usage (inflectional and derivational)
* Tense marking consistency
* Agreement patterns (subject-verb, pronoun-antecedent)
* Morphological errors with classification
4. Error Analysis (for each identified error)
* Precise error location:
* Utterance number and full quotation
* Position within utterance (initial, medial, final)
* Syntactic position (e.g., main clause, subordinate clause, noun phrase)
* Proximity to other linguistic features (e.g., complex vocabulary, disfluencies)
* Error type classification:
* Morphosyntactic (agreement, tense, etc.)
* Lexical-semantic (word selection, collocational)
* Phonological (if transcribed)
* Pragmatic (if contextually inappropriate)
* Error pattern (developmental vs. atypical)
* Clinical significance of location:
* Relationship to sentence complexity (errors increasing with complexity)
* Patterns related to linguistic context (e.g., errors occurring after disfluencies)
* Consistency across similar syntactic environments
* Relationship to cognitive load (e.g., errors increasing in dense information units)
* Error frequency and distribution across contexts
* Self-correction attempts and success rate
5. Fluency Markers
* Mazes (false starts, repetitions, reformulations)
* Filled pauses (um, uh, like, etc.)
* Silent pauses (duration if indicated)
* Disruption patterns and positions
* Impact on communicative effectiveness
QUANTITATIVE ANALYSIS & METRICS
Calculate the following evidence-based metrics with interpretations relevant to adolescent language development:
Productivity Measures
1. Total Output Measures
* Total number of words (TNW)
* Total number of utterances (TNU)
* Total number of different words (TDW)
* Total communication units (T-units/C-units)
2. Length Measures
* Mean length of utterance in words (MLU-w)
* Mean length of utterance in morphemes (MLU-m)
* Mean length of C-unit (MLCU)
* Words per minute (if timing available)
Complexity Measures
1. Syntactic Complexity
* Clausal density (clauses per C-unit)
* Subordination index (SI)
* Coordination index
* Embedding depth (max levels of embedding)
* T-unit complexity ratio
* Percentage of complex sentences
2. Phrase-Level Complexity
* Mean noun phrase length
* Mean verb phrase complexity
* Prepositional phrase frequency
* Adverbial complexity
Accuracy Measures
1. Error Analysis Summary
* Percentage of grammatically correct utterances
* Errors per C-unit
* Error pattern distribution (morphological, syntactic, lexical)
* Most frequent error types with specific examples
* Error location patterns:
* Distribution across utterance positions (initial, medial, final)
* Distribution across syntactic structures (simple vs. complex)
* Correlation with utterance length and complexity
* Patterns related to information density or processing demands
* Clinical significance of error locations:
* Interpretation of position-specific error patterns
* Analysis of syntactic contexts where errors predominate
* Relationship between error location and communicative impact
Lexical Diversity & Sophistication
1. Vocabulary Metrics
* Type-token ratio (TTR)
* Moving-average type-token ratio (MATTR)
* Number of different words (NDW)
* Vocabulary diversity (D)
* Lexical density (content words/total words)
2. Lexical Sophistication
* Low-frequency word usage
* Academic vocabulary presence
* Abstract word usage
* Word specificity analysis
Fluency & Formulation Measures
1. Disruption Analysis
* Percentage of mazes
* Total maze words/total words
* Revisions per utterance
* Hesitation frequency
* Incomplete utterance percentage
* Word-finding difficulties (frequency and patterns)
CASL-2 DOMAIN ALIGNMENT
Analyze the sample according to the Comprehensive Assessment of Spoken Language (CASL-2) framework, providing detailed evidence for each domain:
1. Lexical/Semantic Domain
* Vocabulary Range Assessment
* Basic vs. precise vocabulary usage
* Abstract vs. concrete terminology
* Academic language presence
* Subject-specific terminology
* Register-appropriate lexicon
* Word Relationships
* Synonym/antonym usage
* Categorical relationships
* Part-whole relationships
* Semantic networks
* Word Retrieval Patterns
* Word-finding hesitations
* Circumlocutions
* Semantic substitutions
* Retrieval strategies
* Evidence Summary
* Provide specific examples from transcript
* Compare to age-appropriate expectations
* Estimate standard score range (using clinical judgment)
* Indicate percentile rank range
* Assign performance level category
2. Syntactic Domain
* Sentence Structure Analysis
* Distribution of sentence types
* Complex syntax usage patterns
* Syntactic versatility
* Age-appropriate structures
* Morphosyntactic Elements
* Regular and irregular morphology
* Verb tense system mastery
* Complex verb forms (perfect, progressive)
* Advanced agreement patterns
* Syntactic Maturity Indicators
* Clause combining strategies
* Embedding types and frequency
* Noun phrase elaboration
* Adverbial complexity
* Evidence Summary
* Provide specific examples from transcript
* Compare to age-appropriate expectations
* Estimate standard score range
* Indicate percentile rank range
* Assign performance level category
3. Supralinguistic Domain
* Figurative Language
* Idiomatic expressions
* Metaphors and analogies
* Humor or wordplay
* Understanding of non-literal content
* Higher-Order Reasoning
* Inferential language
* Ambiguity recognition
* Abstract concept expression
* Perspective-taking indicators
* Metalinguistic Awareness
* Self-monitoring
* Linguistic reflection
* Awareness of language rules
* Metacognitive comments
* Evidence Summary
* Provide specific examples from transcript
* Note limitations of assessment from sample
* Estimate standard score range (if sufficient evidence)
* Indicate percentile rank range (if applicable)
* Assign performance level category (or note insufficient evidence)
4. Pragmatic Domain
* Discourse Management
* Topic initiation, maintenance, and change
* Turn-taking patterns
* Response contingency
* Conversational repair strategies
* Social Communication
* Perspective-taking
* Register variation
* Politeness conventions
* Social inferencing
* Narrative/Expository Skills (if applicable)
* Coherence and cohesion
* Organizational structure
* Use of cohesive devices
* Information density
* Evidence Summary
* Provide specific examples from transcript
* Note contextual limitations
* Estimate standard score range (if sufficient evidence)
* Indicate percentile rank range (if applicable)
* Assign performance level category (or note insufficient evidence)
DEVELOPMENTAL PROFILE ANALYSIS
Compare observed language features to established adolescent language development patterns:
1. Age-Based Comparison
* Alignment with typical syntactic development (14-18)
* Lexical development expectations
* Discourse maturity indicators
* Academic language benchmarks
2. Strength-Challenge Pattern Analysis
* Identify domains of relative strength with evidence
* Identify domains requiring support with evidence
* Note any asynchronous development patterns
* Document compensatory strategies observed
3. Developmental Trajectory Indicators
* Features suggesting typical development
* Features suggesting delayed development
* Features suggesting disordered development
* Features suggesting language difference vs. disorder
COMPREHENSIVE REPORTING FORMAT
1. Professional Clinical Summary (SLP-Oriented)
* Sample characteristics and analysis methodology
* Key quantitative findings table with age-based interpretation
* CASL-2 domain profiles with evidence-based rationales
* Error pattern analysis with clinical implications
* Identified strengths and challenges
* Differential considerations
* Recommendations for further assessment
* Potential treatment targets based on evidence
2. Family-Friendly Summary Report
* Introduction
* Purpose of language sample analysis
* Brief explanation of what was analyzed
* How this information helps understand communication
* Your Adolescent's Language Profile
* Overall communication strengths (with clear examples)
* Areas for continued growth (with supportive examples)
* How these patterns may impact academic and social communication
* Understanding the Assessment
* Simple explanations of key findings
* Comparison to typical adolescent language patterns
* Visual representation of language profile
* Accessible examples from the transcript
* Supporting Language Development
* Practical strategies aligned with findings
* Communication opportunities that leverage strengths
* Questions to discuss with the SLP
* Resources for family understanding
* Next Steps
* Connections to academic and social communication
* Relevance to current educational goals
* Partnership opportunities between home and therapy
3. Educational Implications (if requested)
* Connections to academic standards
* Impact on classroom participation
* Alignment with IEP goals (if applicable)
* Recommendations for classroom support
IMPLEMENTATION GUIDELINES
1. Analysis Integrity
* Analyze only what is directly observable in the transcript
* Clearly differentiate observations from interpretations
* Note when certain domains cannot be adequately assessed
* Document analysis limitations based on sample constraints
2. Clinical Reasoning
* Apply evidence-based standards for adolescent language
* Consider developmental appropriateness for ages 14-18
* Document patterns rather than isolated instances
* Provide context for interpretations
3. Reporting Ethics
* Use person-first, strength-based language
* Avoid definitive diagnostic statements
* Focus on functional communication impact
* Maintain appropriate scope of analysis
4. Flexibility Adaptations
* For different discourse types (narrative, expository, conversational)
* For different cultural and linguistic backgrounds
* For various academic and social contexts
* For potential co-occurring conditions
This protocol produces a comprehensive linguistic analysis tailored to adolescents (14-18) that provides both clinically relevant information and family-accessible insights while maintaining the flexibility to adapt to various sample types and contexts.
"""
prompt = f"""
{role_context}
You are analyzing a transcript for a patient who is {age} years old and {gender}.
TRANSCRIPT:
{transcript}
{cheat_sheet}
{instructions}
Remember to be precise but compassionate in your analysis. Use direct quotes from the transcript for every factor and domain you analyze.
"""
# Call the appropriate API or fallback to demo mode
if bedrock_client:
response = call_bedrock(prompt)
else:
response = generate_demo_response(prompt)
# Parse the response
results = parse_casl_response(response)
# Create visualizations
plot_image = create_casl_plots(results['speech_factors'], results['casl_data'])
radar_image = create_casl_radar_chart(results['speech_factors'])
return results, plot_image, radar_image, response
def transcribe_audio(audio_path, patient_age=8):
"""Transcribe an audio recording using Amazon Transcribe and format in CHAT format"""
if not os.path.exists(audio_path):
logger.error(f"Audio file not found: {audio_path}")
return "Error: Audio file not found."
if not transcribe_client or not s3_client:
logger.warning("AWS clients not initialized, using demo transcription")
return generate_demo_transcription()
try:
# Get file info
file_name = os.path.basename(audio_path)
file_size = os.path.getsize(audio_path)
_, file_extension = os.path.splitext(file_name)
# Check file format
supported_formats = ['.mp3', '.mp4', '.wav', '.flac', '.ogg', '.amr', '.webm']
if file_extension.lower() not in supported_formats:
logger.error(f"Unsupported audio format: {file_extension}")
return f"Error: Unsupported audio format. Please use one of: {', '.join(supported_formats)}"
# Generate a unique job name
timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
job_name = f"casl-transcription-{timestamp}"
s3_key = f"{S3_PREFIX}{job_name}{file_extension}"
# Upload to S3
logger.info(f"Uploading {file_name} to S3 bucket {S3_BUCKET}")
try:
with open(audio_path, 'rb') as audio_file:
s3_client.upload_fileobj(audio_file, S3_BUCKET, s3_key)
except Exception as e:
logger.error(f"Failed to upload to S3: {str(e)}")
# If upload fails, try to create the bucket
try:
s3_client.create_bucket(Bucket=S3_BUCKET)
logger.info(f"Created S3 bucket: {S3_BUCKET}")
# Try upload again
with open(audio_path, 'rb') as audio_file:
s3_client.upload_fileobj(audio_file, S3_BUCKET, s3_key)
except Exception as bucket_error:
logger.error(f"Failed to create bucket and upload: {str(bucket_error)}")
return "Error: Failed to upload audio file. Please check your AWS permissions."
# Start transcription job
logger.info(f"Starting transcription job: {job_name}")
media_format = file_extension.lower()[1:] # Remove the dot
if media_format == 'webm':
media_format = 'webm' # Amazon Transcribe expects this
# Determine language settings based on patient age
if patient_age < 10:
# For younger children, enabling child language model is helpful
language_options = {
'LanguageCode': 'en-US',
'Settings': {
'ShowSpeakerLabels': True,
'MaxSpeakerLabels': 2 # Typically patient + clinician
}
}
else:
language_options = {
'LanguageCode': 'en-US',
'Settings': {
'ShowSpeakerLabels': True,
'MaxSpeakerLabels': 2 # Typically patient + clinician
}
}
transcribe_client.start_transcription_job(
TranscriptionJobName=job_name,
Media={
'MediaFileUri': f"s3://{S3_BUCKET}/{s3_key}"
},
MediaFormat=media_format,
**language_options
)
# Wait for the job to complete (with timeout)
logger.info("Waiting for transcription to complete...")
max_tries = 30 # 5 minutes max wait
tries = 0
while tries < max_tries:
try:
job = transcribe_client.get_transcription_job(TranscriptionJobName=job_name)
status = job['TranscriptionJob']['TranscriptionJobStatus']
if status == 'COMPLETED':
# Get the transcript
transcript_uri = job['TranscriptionJob']['Transcript']['TranscriptFileUri']
# Download the transcript
import urllib.request
import json
with urllib.request.urlopen(transcript_uri) as response:
transcript_json = json.loads(response.read().decode('utf-8'))
# Convert to CHAT format
chat_transcript = format_as_chat(transcript_json)
return chat_transcript
elif status == 'FAILED':
reason = job['TranscriptionJob'].get('FailureReason', 'Unknown failure')
logger.error(f"Transcription job failed: {reason}")
return f"Error: Transcription failed - {reason}"
# Still in progress, wait and try again
tries += 1
time.sleep(10) # Check every 10 seconds
except Exception as e:
logger.error(f"Error checking transcription job: {str(e)}")
return f"Error getting transcription: {str(e)}"
# If we got here, we timed out
return "Error: Transcription timed out. The process is taking longer than expected."
except Exception as e:
logger.exception("Error in audio transcription")
return f"Error transcribing audio: {str(e)}"
def format_as_chat(transcript_json):
"""Format the Amazon Transcribe JSON result as CHAT format"""
try:
# Get transcript items
items = transcript_json['results']['items']
# Get speaker labels if available
speakers = {}
if 'speaker_labels' in transcript_json['results']:
speaker_segments = transcript_json['results']['speaker_labels']['segments']
# Map each item to its speaker
for segment in speaker_segments:
for item in segment['items']:
start_time = item['start_time']
speakers[start_time] = segment['speaker_label']
# Build transcript by combining words into utterances by speaker
current_speaker = None
current_utterance = []
utterances = []
for item in items:
# Skip non-pronunciation items (like punctuation)
if item['type'] != 'pronunciation':
continue
word = item['alternatives'][0]['content']
start_time = item.get('start_time')
# Determine speaker if available
speaker = speakers.get(start_time, 'spk_0')
# If speaker changed, start a new utterance
if speaker != current_speaker and current_utterance:
utterances.append((current_speaker, ' '.join(current_utterance)))
current_utterance = []
current_speaker = speaker
current_utterance.append(word)
# Add the last utterance
if current_utterance:
utterances.append((current_speaker, ' '.join(current_utterance)))
# Format as CHAT
chat_lines = []
for speaker, text in utterances:
# Map speakers to CHAT format
# Assuming spk_0 is the patient (PAR) and spk_1 is the clinician (INV)
chat_speaker = "*PAR:" if speaker == "spk_0" else "*INV:"
chat_lines.append(f"{chat_speaker} {text}.")
return '\n'.join(chat_lines)
except Exception as e:
logger.exception("Error formatting transcript")
return "*PAR: (Error formatting transcript)"
def answer_slp_question(question):
"""Answer a question about SLP practice or CASL assessment"""
prompt = f"""
You are an experienced Speech-Language Pathologist answering a question from a colleague.
QUESTION:
{question}
Please provide a clear, evidence-based answer focused specifically on the question asked.
Reference best practices and current research where appropriate.
Keep your answer concise but comprehensive.
"""
if bedrock_client:
answer = call_bedrock(prompt)
else:
answer = generate_demo_qa_response(question)
return answer
# ===============================
# Gradio Interface
# ===============================
def create_interface():
"""Create the main Gradio interface"""
# Use a simple theme with default colors
custom_theme = gr.themes.Soft(
font=[gr.themes.GoogleFont("Inter"), "system-ui", "sans-serif"]
)
with gr.Blocks(theme=custom_theme, css="""
.header {
text-align: center;
margin-bottom: 20px;
}
.header img {
max-height: 100px;
margin-bottom: 10px;
}
.container {
border-radius: 10px;
padding: 10px;
margin-bottom: 20px;
}
.patient-info {
background-color: #e3f2fd;
}
.speech-sample {
background-color: #f0f8ff;
}
.results-container {
background-color: #f9f9f9;
}
.viz-container {
display: flex;
justify-content: center;
margin-bottom: 20px;
}
.footer {
text-align: center;
margin-top: 30px;
padding: 10px;
font-size: 0.8em;
color: #78909C;
}
.info-box {
background-color: #e8f5e9;
border-left: 4px solid #4CAF50;
padding: 10px 15px;
margin-bottom: 15px;
border-radius: 4px;
}
.warning-box {
background-color: #fff8e1;
border-left: 4px solid #FFC107;
padding: 10px 15px;
border-radius: 4px;
}
.markdown-text h3 {
color: #2C7FB8;
border-bottom: 1px solid #eaeaea;
padding-bottom: 5px;
}
.evidence-table {
border-collapse: collapse;
width: 100%;
}
.evidence-table th, .evidence-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.evidence-table th {
background-color: #f5f7fa;
color: #333;
}
.evidence-table tr:nth-child(even) {
background-color: #f9f9f9;
}
.tab-content {
padding: 15px;
background-color: white;
border-radius: 0 0 8px 8px;
box-shadow: 0 2px 5px rgba(0,0,0,0.05);
}
""") as app:
# Create header with logo
gr.HTML(
"""
<div class="header">
<h1>SLP Analysis Tool</h1>
<p>A comprehensive assessment tool for Speech-Language Pathologists</p>
</div>
"""
)
# Main tabs
with gr.Tabs() as main_tabs:
# ===============================
# CASL Analysis Tab
# ===============================
with gr.TabItem("CASL Analysis", id=0):
with gr.Row():
# Left column - Input section
with gr.Column(scale=1):
# Patient information panel
with gr.Group(elem_classes="container patient-info"):
gr.Markdown("### Patient Information")
with gr.Row():
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
record_id = gr.Textbox(label="Record ID", placeholder="Enter record ID")
with gr.Row():
age = gr.Number(label="Age", value=8, minimum=1, maximum=120)
gender = gr.Radio(["male", "female", "other"], label="Gender", value="male")
with gr.Row():
assessment_date = gr.Textbox(
label="Assessment Date",
placeholder="MM/DD/YYYY",
value=datetime.now().strftime('%m/%d/%Y')
)
clinician_name = gr.Textbox(
label="Clinician",
placeholder="Enter clinician name"
)
# Speech sample panel
with gr.Group(elem_classes="container speech-sample"):
gr.Markdown("### Speech Sample")
# Sample button
sample_btn = gr.Button("Load Sample Transcript", size="sm")
# Transcript input
transcript = gr.Textbox(
label="Transcript",
placeholder="Paste the speech transcript here...",
lines=10
)
# Add info about transcript format
gr.Markdown(
"""
<div class="info-box">
<strong>Transcript Format:</strong> Use CHAT format with *PAR: for patient lines.
Mark word-finding with &-um, paraphasias with [*], and provide intended words with [: word].
</div>
""",
elem_classes="markdown-text"
)
# File upload
file_upload = gr.File(
label="Or upload a transcript file",
file_types=["text", "txt", "pdf", "rtf"]
)
# Analysis button
analyze_btn = gr.Button("Analyze Speech Sample", variant="primary", size="lg")
# Right column - Results section
with gr.Column(scale=1):
with gr.Group(elem_classes="container results-container"):
with gr.Tabs() as results_tabs:
# Summary tab
with gr.TabItem("Summary", id=0, elem_classes="tab-content"):
with gr.Group():
gr.Markdown("### Key Findings", elem_classes="markdown-text")
speech_factors_md = gr.Markdown(elem_classes="markdown-text")
with gr.Accordion("CASL Assessment Results", open=True):
casl_results_md = gr.Markdown(elem_classes="markdown-text")
with gr.Accordion("Detailed Error Examples", open=True):
specific_errors_md = gr.Markdown(elem_classes="markdown-text")
# Treatment tab
with gr.TabItem("Treatment Plan", id=1, elem_classes="tab-content"):
gr.Markdown("### Recommended Treatment Approaches", elem_classes="markdown-text")
treatment_md = gr.Markdown(elem_classes="treatment-panel")
gr.Markdown("### Clinical Rationale", elem_classes="markdown-text")
explanation_md = gr.Markdown(elem_classes="panel")
with gr.Accordion("Supporting Evidence", open=False):
gr.Markdown("""
<table class="evidence-table">
<tr>
<th>Factor</th>
<th>Evidence-based Approaches</th>
<th>References</th>
</tr>
<tr>
<td>Word Retrieval</td>
<td>Semantic feature analysis, phonological cueing, word generation tasks</td>
<td>Boyle, 2010; Kiran & Thompson, 2003</td>
</tr>
<tr>
<td>Grammatical Errors</td>
<td>Treatment of Underlying Forms (TUF), Morphosyntactic therapy</td>
<td>Thompson et al., 2003; Ebbels, 2014</td>
</tr>
<tr>
<td>Fluency/Prosody</td>
<td>Rate control, rhythmic cueing, contrastive stress exercises</td>
<td>Ballard et al., 2010; Tamplin & Baker, 2017</td>
</tr>
</table>
""", elem_classes="markdown-text")
# Full report tab
with gr.TabItem("Full Report", id=2, elem_classes="tab-content"):
full_analysis = gr.Markdown()
# Add PDF export option
export_btn = gr.Button("Export Report as PDF", variant="secondary")
export_status = gr.Markdown("")
# Raw LLM Output tab
with gr.TabItem("Raw LLM Output", id=3, elem_classes="tab-content"):
gr.Markdown("### Complete Model Output", elem_classes="markdown-text")
gr.Markdown("This tab shows the unprocessed output from the AI model for debugging purposes.")
raw_llm_output = gr.Textbox(
label="Raw AI Output",
lines=20,
interactive=False
)
# ===============================
# Patient Records Tab
# ===============================
with gr.TabItem("Patient Records", id=1):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Patient Records")
# Records table with status column
patient_records_table = gr.Dataframe(
headers=["ID", "Name", "Record ID", "Age", "Gender", "Assessment Date", "Clinician", "Status"],
datatype=["str", "str", "str", "str", "str", "str", "str", "str"],
label="Saved Patients",
interactive=False
)
with gr.Row():
refresh_records_btn = gr.Button("Refresh Records", size="sm")
delete_record_btn = gr.Button("Delete Selected Record", size="sm", variant="secondary")
records_status = gr.Markdown("")
# Record selection
selected_record_id = gr.Textbox(label="Selected Record ID", visible=False)
with gr.Row():
load_record_btn = gr.Button("Load for Analysis", variant="primary")
with gr.Column(scale=1):
# Record details
record_details = gr.Markdown(label="Record Details")
with gr.Accordion("Record Actions", open=False):
export_record_btn = gr.Button("Export Record as PDF", variant="secondary")
# Event handlers for records
def refresh_patient_records():
"""Refresh the patient records table"""
records = get_all_patient_records()
data = []
for r in records:
data.append([
r["id"], r["name"], r["record_id"],
r["age"], r["gender"], r["assessment_date"], r["clinician"]
])
df = pd.DataFrame(data)
status_msg = f"Found {len(data)} patient records."
return df, status_msg
refresh_records_btn.click(
refresh_patient_records,
outputs=[patient_records_table, records_status]
)
# Note: The automatic tab selection event was removed because it's not supported in newer Gradio versions
# Instead, we'll rely on the refresh button that's already in place
# Load record when a row is selected
def handle_record_selection(evt: gr.SelectData, records):
if records is None or len(records) == 0:
return "", "No record selected."
selected_row = evt.index[0]
if selected_row < len(records):
record_id = records.iloc[selected_row, 0]
# Load the record to show details
record_data = load_patient_record(record_id)
if record_data:
patient_info = record_data.get("patient_info", {})
# Format record details as markdown
details = f"""
## Selected Patient Record
**Name:** {patient_info.get('name', 'N/A')}
**Record ID:** {patient_info.get('record_id', 'N/A')}
**Age:** {patient_info.get('age', 'N/A')}
**Gender:** {patient_info.get('gender', 'N/A')}
**Assessment Date:** {patient_info.get('assessment_date', 'N/A')}
**Clinician:** {patient_info.get('clinician', 'N/A')}
**Analyzed:** {record_data.get('timestamp', 'Unknown')}
### Preview
This record contains:
- Speech transcript analysis
- CASL assessment results
- Treatment recommendations
Click "Load Selected Record" to view the full analysis.
"""
return record_id, details
return record_id, f"Selected record: {record_id}"
return "", "Invalid selection."
patient_records_table.select(
handle_record_selection,
inputs=[patient_records_table],
outputs=[selected_record_id, record_details]
)
# Load record into analysis tab
def load_patient_record_to_analysis(record_id):
if not record_id:
return gr.update(selected=1), "", "", "", "male", "", "", "", ""
record_data = load_patient_record(record_id)
if not record_data:
return gr.update(selected=1), "", "", "", "male", "", "", "", ""
# Extract data
patient_info = record_data.get("patient_info", {})
transcript_text = record_data.get("transcript", "")
analysis_results = record_data.get("analysis_results", {})
# Create status message for the record loading
status_msg = f"✅ Record loaded successfully: {patient_info.get('name', 'Unknown')} ({record_id})"
# Now we should also load the analysis results
# In a future version, we would need to update all analysis outputs here as well
return (
gr.update(selected=0), # Switch to analysis tab
patient_info.get("name", ""),
patient_info.get("record_id", ""),
patient_info.get("age", ""),
patient_info.get("gender", "male"),
patient_info.get("assessment_date", ""),
patient_info.get("clinician", ""),
transcript_text,
status_msg
)
load_record_btn.click(
load_patient_record_to_analysis,
inputs=[selected_record_id],
outputs=[
main_tabs,
patient_name, record_id, age, gender,
assessment_date, clinician_name, transcript,
records_status
]
)
# ===============================
# Transcription Tool Tab
# ===============================
with gr.TabItem("Transcription Tool", id=2):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Audio Transcription Tool")
gr.Markdown("Upload an audio recording to automatically transcribe it in CHAT format.")
audio_input = gr.Audio(type="filepath", label="Upload Audio Recording")
with gr.Row():
transcription_age = gr.Number(label="Patient Age", value=8, minimum=1, maximum=120)
transcribe_btn = gr.Button("Transcribe Audio", variant="primary")
with gr.Column(scale=1):
transcription_output = gr.Textbox(
label="Transcription Result",
placeholder="Transcription will appear here...",
lines=12
)
with gr.Row():
copy_to_analysis_btn = gr.Button("Use for Analysis", variant="secondary")
edit_transcription_btn = gr.Button("Edit Transcription", variant="secondary")
# ===============================
# SLP Assistant Tab
# ===============================
with gr.TabItem("SLP Assistant", id=3):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### SLP Knowledge Assistant")
gr.Markdown("Ask questions about CASL assessment, therapy techniques, or SLP best practices.")
question_input = gr.Textbox(
label="Your Question",
placeholder="e.g., What activities help improve word-finding skills?",
lines=3
)
ask_question_btn = gr.Button("Ask Question", variant="primary")
# Quick question buttons
gr.Markdown("#### Common Questions")
with gr.Row():
q1_btn = gr.Button("What is CASL?")
q2_btn = gr.Button("How do I interpret scores?")
with gr.Row():
q3_btn = gr.Button("Activities for word finding")
q4_btn = gr.Button("When to reassess")
with gr.Column(scale=1):
answer_output = gr.Markdown()
with gr.Accordion("References", open=False):
gr.Markdown("""
- American Speech-Language-Hearing Association (ASHA)
- Comprehensive Assessment of Spoken Language (CASL-2) Manual
- Evidence-Based Practice in Speech-Language Pathology
- Current research in pediatric language intervention
""")
# ===============================
# Event Handlers
# ===============================
# Load sample transcript button
def load_sample():
return SAMPLE_TRANSCRIPT
sample_btn.click(load_sample, outputs=[transcript])
# File upload handler
file_upload.upload(process_upload, file_upload, transcript)
# Analysis button handler
def on_analyze_click(transcript_text, age_val, gender_val, patient_name_val, record_id_val, clinician_val, assessment_date_val):
if not transcript_text or len(transcript_text.strip()) < 50:
return (
"Error: Please provide a longer transcript for analysis.",
"The transcript is too short for meaningful analysis.",
"Please provide a speech sample with at least 50 characters.",
"Error: Insufficient data",
"Please provide a speech sample with at least 50 characters.",
"",
"",
""
)
try:
# Get the raw analysis response
results, _, _, full_text = analyze_transcript(transcript_text, age_val, gender_val)
# Extract speech factors section using section markers
speech_factors_section = ""
factors_pattern = re.compile(r"<SPEECH_FACTORS_START>(.*?)<SPEECH_FACTORS_END>", re.DOTALL)
factors_match = factors_pattern.search(full_text)
if factors_match:
speech_factors_section = factors_match.group(1).strip()
else:
# Fallback to old pattern if markers aren't found
old_factors_pattern = re.compile(r"(Difficulty producing fluent.*?)(?:Evaluation of CASL Skills|<CASL_SKILLS_START>)", re.DOTALL)
old_factors_match = old_factors_pattern.search(full_text)
if old_factors_match:
speech_factors_section = old_factors_match.group(1).strip()
else:
speech_factors_section = "Error extracting speech factors from analysis."
# Extract CASL skills section
casl_section = ""
casl_pattern = re.compile(r"<CASL_SKILLS_START>(.*?)<CASL_SKILLS_END>", re.DOTALL)
casl_match = casl_pattern.search(full_text)
if casl_match:
casl_section = casl_match.group(1).strip()
else:
# Fallback pattern
old_casl_pattern = re.compile(r"(?:Evaluation of CASL Skills:|Lexical/Semantic Skills:)(.*?)(?:Other analysis/Best plans of action:|<TREATMENT_RECOMMENDATIONS_START>)", re.DOTALL)
old_casl_match = old_casl_pattern.search(full_text)
if old_casl_match:
casl_section = old_casl_match.group(1).strip()
# Add a header if it's missing
if not casl_section.startswith("Lexical"):
casl_section = "Evaluation of CASL Skills:\n\n" + casl_section
else:
casl_section = "Error extracting CASL skills from analysis."
# Extract treatment recommendations
treatment_text = ""
treatment_pattern = re.compile(r"<TREATMENT_RECOMMENDATIONS_START>(.*?)<TREATMENT_RECOMMENDATIONS_END>", re.DOTALL)
treatment_match = treatment_pattern.search(full_text)
if treatment_match:
treatment_text = "### Treatment Recommendations\n\n" + treatment_match.group(1).strip()
else:
# Fallback pattern
old_treatment_pattern = re.compile(r"(?:Other analysis/Best plans of action:)(.*?)(?:Explanation:|<EXPLANATION_START>)", re.DOTALL)
old_treatment_match = old_treatment_pattern.search(full_text)
if old_treatment_match:
treatment_text = "### Treatment Recommendations\n\n" + old_treatment_match.group(1).strip()
elif 'treatment_suggestions' in results:
treatment_text = "### Treatment Recommendations\n\n"
for suggestion in results['treatment_suggestions']:
treatment_text += f"- {suggestion}\n"
# Extract explanation section
explanation_text = "### Clinical Rationale\n\n"
explanation_pattern = re.compile(r"<EXPLANATION_START>(.*?)<EXPLANATION_END>", re.DOTALL)
explanation_match = explanation_pattern.search(full_text)
if explanation_match:
explanation_text += explanation_match.group(1).strip()
else:
# Fallback pattern
old_explanation_pattern = re.compile(r"(?:Explanation:)(.*?)(?:Additional Analysis:|<ADDITIONAL_ANALYSIS_START>)", re.DOTALL)
old_explanation_match = old_explanation_pattern.search(full_text)
if old_explanation_match:
explanation_text += old_explanation_match.group(1).strip()
else:
explanation_text += results.get('explanation', "No explanation provided.")
# Extract additional analysis
additional_analysis = ""
additional_pattern = re.compile(r"<ADDITIONAL_ANALYSIS_START>(.*?)<ADDITIONAL_ANALYSIS_END>", re.DOTALL)
additional_match = additional_pattern.search(full_text)
if additional_match:
additional_analysis = additional_match.group(1).strip()
explanation_text += "\n\n### Additional Analysis\n\n" + additional_analysis
else:
# Fallback pattern
old_additional_pattern = re.compile(r"(?:Additional Analysis:)(.*?)(?:Diagnostic Impressions:|<DIAGNOSTIC_IMPRESSIONS_START>)", re.DOTALL)
old_additional_match = old_additional_pattern.search(full_text)
if old_additional_match:
explanation_text += "\n\n### Additional Analysis\n\n" + old_additional_match.group(1).strip()
elif 'additional_analysis' in results:
explanation_text += "\n\n### Additional Analysis\n\n" + results.get('additional_analysis', "")
# Extract diagnostic impressions
diagnostic_impressions = ""
diagnostic_pattern = re.compile(r"<DIAGNOSTIC_IMPRESSIONS_START>(.*?)<DIAGNOSTIC_IMPRESSIONS_END>", re.DOTALL)
diagnostic_match = diagnostic_pattern.search(full_text)
if diagnostic_match:
diagnostic_impressions = diagnostic_match.group(1).strip()
# Add to the explanation section
explanation_text += "\n\n### Diagnostic Impressions\n\n" + diagnostic_impressions
# Extract specific error examples
specific_errors_text = "## Detailed Error Examples\n\n"
# First try the dedicated section
errors_pattern = re.compile(r"<ERROR_EXAMPLES_START>(.*?)<ERROR_EXAMPLES_END>", re.DOTALL)
errors_match = errors_pattern.search(full_text)
if errors_match:
specific_errors_text += errors_match.group(1).strip()
else:
# Fallback to extracting examples from the text
example_sections = re.findall(r"Examples:\s*\n((?:- \".*\"\s*\n)+)", full_text)
for section in example_sections:
specific_errors_text += section + "\n"
if not example_sections:
specific_errors_text += "No specific error examples were found in the analysis."
# Save the record to storage
patient_info = {
"name": patient_name_val,
"record_id": record_id_val,
"age": age_val,
"gender": gender_val,
"assessment_date": assessment_date_val,
"clinician": clinician_val
}
saved_id = save_patient_record(patient_info, results, transcript_text)
save_message = ""
if saved_id:
save_message = f"""
✅ Patient record saved successfully.
**System ID:** {saved_id}
**Patient:** {patient_name_val or "Unnamed"}
**Record ID:** {record_id_val or "Not provided"}
You can access this record later in the Patient Records tab.
"""
else:
save_message = "⚠️ Failed to save patient record. Please check data directory permissions."
# Format to include patient metadata in the full report
patient_info_text = ""
if patient_name_val:
patient_info_text += f"**Patient:** {patient_name_val}\n"
if record_id_val:
patient_info_text += f"**Record ID:** {record_id_val}\n"
if age_val:
patient_info_text += f"**Age:** {age_val} years\n"
if gender_val:
patient_info_text += f"**Gender:** {gender_val}\n"
if assessment_date_val:
patient_info_text += f"**Assessment Date:** {assessment_date_val}\n"
if clinician_val:
patient_info_text += f"**Clinician:** {clinician_val}\n"
if saved_id:
patient_info_text += f"**System ID:** {saved_id}\n"
if patient_info_text:
full_report = f"## Patient Information\n\n{patient_info_text}\n\n## Analysis Report\n\n{full_text}"
else:
full_report = f"## Complete Analysis Report\n\n{full_text}"
# Get the raw LLM response for debugging
raw_output = full_text
return (
speech_factors_section,
casl_section,
treatment_text,
explanation_text,
full_report,
save_message,
specific_errors_text,
raw_output
)
except Exception as e:
logger.exception("Error during analysis")
error_message = f"Error during analysis: {str(e)}"
return (
f"Error: {str(e)}",
"Error: Analysis failed. Please check input data.",
"Error: Treatment analysis not available.",
"An error occurred while processing the transcript.",
f"Error details: {str(e)}",
"",
"",
f"Analysis failed with error: {error_message}\n\nPlease check your transcript format and try again."
)
analyze_btn.click(
on_analyze_click,
inputs=[
transcript, age, gender,
patient_name, record_id, clinician_name, assessment_date
],
outputs=[
speech_factors_md,
casl_results_md,
treatment_md,
explanation_md,
full_analysis,
export_status,
specific_errors_md,
raw_llm_output
]
)
# Improved PDF export functionality
def export_pdf(report_text, patient_name="Patient", record_id="", age="", gender="", assessment_date="", clinician=""):
# Check if ReportLab is available
if not REPORTLAB_AVAILABLE:
return "Error: ReportLab library is not installed. Please install it with 'pip install reportlab'."
try:
# Create a proper downloads directory in the app folder
downloads_dir = os.path.join(DATA_DIR, "downloads")
os.makedirs(downloads_dir, exist_ok=True)
# Generate a safe filename
if patient_name and record_id:
safe_name = f"{patient_name.replace(' ', '_')}_{record_id}"
elif patient_name:
safe_name = patient_name.replace(' ', '_')
else:
safe_name = f"speech_analysis_{datetime.now().strftime('%Y%m%d%H%M%S')}"
# Create the PDF path in our downloads directory
pdf_path = os.path.join(downloads_dir, f"{safe_name}.pdf")
# Create the PDF document
doc = SimpleDocTemplate(pdf_path, pagesize=letter)
styles = getSampleStyleSheet()
# Create enhanced custom styles
styles.add(ParagraphStyle(
name='Heading1',
parent=styles['Heading1'],
fontSize=16,
spaceAfter=12,
textColor=colors.navy
))
styles.add(ParagraphStyle(
name='Heading2',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=10,
spaceBefore=10,
textColor=colors.darkblue
))
styles.add(ParagraphStyle(
name='Heading3',
parent=styles['Heading2'],
fontSize=12,
spaceAfter=8,
spaceBefore=8,
textColor=colors.darkblue
))
styles.add(ParagraphStyle(
name='BodyText',
parent=styles['BodyText'],
fontSize=11,
spaceAfter=8,
leading=14
))
styles.add(ParagraphStyle(
name='BulletPoint',
parent=styles['BodyText'],
fontSize=11,
leftIndent=20,
firstLineIndent=-15,
spaceAfter=4,
leading=14
))
# Convert markdown to PDF elements
story = []
# Add title and date
story.append(Paragraph("Speech Language Assessment Report", styles['Title']))
story.append(Spacer(1, 12))
# Add patient information table
if patient_name or record_id or age or gender:
# Prepare patient info data
data = []
if patient_name:
data.append(["Patient Name:", patient_name])
if record_id:
data.append(["Record ID:", record_id])
if age:
data.append(["Age:", f"{age} years"])
if gender:
data.append(["Gender:", gender])
if assessment_date:
data.append(["Assessment Date:", assessment_date])
if clinician:
data.append(["Clinician:", clinician])
if data:
# Create a table with the data
patient_table = Table(data, colWidths=[120, 350])
patient_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.lightgrey),
('TEXTCOLOR', (0, 0), (0, -1), colors.darkblue),
('ALIGN', (0, 0), (0, -1), 'RIGHT'),
('ALIGN', (1, 0), (1, -1), 'LEFT'),
('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
('BOTTOMPADDING', (0, 0), (-1, -1), 6),
('TOPPADDING', (0, 0), (-1, -1), 6),
('GRID', (0, 0), (-1, -1), 0.5, colors.lightgrey),
]))
story.append(patient_table)
story.append(Spacer(1, 12))
# Process the markdown content
in_bullet_list = False
current_list_items = []
for line in report_text.split('\n'):
line = line.strip()
# Skip empty lines
if not line:
if in_bullet_list:
# End the current list
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
story.append(Spacer(1, 6))
else:
story.append(Spacer(1, 6))
continue
# Check for headings
if line.startswith('# '):
if in_bullet_list:
# End the current list before starting a new section
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
story.append(Paragraph(line[2:], styles['Heading1']))
elif line.startswith('## '):
if in_bullet_list:
# End the current list before starting a new section
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
story.append(Paragraph(line[3:], styles['Heading2']))
elif line.startswith('### '):
if in_bullet_list:
# End the current list before starting a new section
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
story.append(Paragraph(line[4:], styles['Heading3']))
elif line.startswith('- '):
# Bullet points - collect them to process as a list
in_bullet_list = True
current_list_items.append(line[2:])
elif line.startswith('**') and line.endswith('**'):
# Bold text - assuming it's a short line like a heading
if in_bullet_list:
# End the current list before adding this element
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
text = line.replace('**', '')
story.append(Paragraph(f"<b>{text}</b>", styles['BodyText']))
else:
# Regular text
if in_bullet_list:
# End the current list before adding regular text
in_bullet_list = False
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
current_list_items = []
# Handle lines with bold text within them
formatted_line = line
bold_pattern = re.compile(r'\*\*(.*?)\*\*')
for match in bold_pattern.finditer(line):
bold_text = match.group(1)
formatted_line = formatted_line.replace(f"**{bold_text}**", f"<b>{bold_text}</b>")
story.append(Paragraph(formatted_line, styles['BodyText']))
# If there are any remaining list items, add them now
if in_bullet_list:
for item in current_list_items:
story.append(Paragraph(f"• {item}", styles['BulletPoint']))
# Add footer with date
footer_text = f"Generated on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
story.append(Spacer(1, 20))
story.append(Paragraph(footer_text, ParagraphStyle(
name='Footer',
parent=styles['Normal'],
fontSize=8,
textColor=colors.grey
)))
# Build the PDF
doc.build(story)
# Create a copy in the temp directory to make it accessible in web environments
temp_dir = tempfile.gettempdir()
temp_pdf_path = os.path.join(temp_dir, f"{safe_name}.pdf")
shutil.copy2(pdf_path, temp_pdf_path)
return f"Report saved as PDF: {pdf_path}<br>Temporary copy: {temp_pdf_path}"
except Exception as e:
logger.exception("Error creating PDF")
return f"Error creating PDF: {str(e)}"
# Use the full PDF export function regardless of environment
export_btn.click(
export_pdf,
inputs=[
full_analysis,
patient_name,
record_id,
age,
gender,
assessment_date,
clinician_name
],
outputs=[export_status]
)
# Transcription button
def on_transcribe_audio(audio_path, age):
try:
if not audio_path:
return "Please upload an audio file to transcribe."
transcription = transcribe_audio(audio_path, age)
return transcription
except Exception as e:
logger.exception("Error transcribing audio")
return f"Error transcribing audio: {str(e)}"
transcribe_btn.click(
on_transcribe_audio,
inputs=[audio_input, transcription_age],
outputs=[transcription_output]
)
# Copy transcription to analysis
def copy_to_analysis(transcription):
return transcription, gr.update(selected=0) # Switches to the Analysis tab
copy_to_analysis_btn.click(
copy_to_analysis,
inputs=[transcription_output],
outputs=[transcript, main_tabs]
)
# SLP Assistant question handling
def on_ask_question(question):
try:
answer = answer_slp_question(question)
return answer
except Exception as e:
logger.exception("Error getting answer")
return f"Error: {str(e)}"
ask_question_btn.click(
on_ask_question,
inputs=[question_input],
outputs=[answer_output]
)
# Quick question buttons
q1_btn.click(lambda: "What is CASL?", outputs=[question_input])
q2_btn.click(lambda: "How do I interpret CASL scores?", outputs=[question_input])
q3_btn.click(lambda: "What activities help with word finding difficulties?", outputs=[question_input])
q4_btn.click(lambda: "When should I reassess a patient?", outputs=[question_input])
return app
# ===============================
# Main Application
# ===============================
# Create requirements.txt file for HuggingFace Spaces
def create_requirements_file():
requirements = [
"gradio>=4.0.0",
"pandas",
"matplotlib",
"numpy",
"Pillow",
"PyPDF2",
"boto3",
"reportlab",
"uuid"
]
with open("requirements.txt", "w") as f:
for req in requirements:
f.write(f"{req}\n")
# Create and launch the interface
if __name__ == "__main__":
# Create requirements.txt for HuggingFace Spaces
create_requirements_file()
# Check for AWS credentials
if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
print("NOTE: AWS credentials not found. The app will run in demo mode with simulated responses.")
print("To enable full functionality, set AWS_ACCESS_KEY and AWS_SECRET_KEY environment variables.")
# Launch the Gradio app
app = create_interface()
app.launch()
|