File size: 27,204 Bytes
e8538b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
# Multi-Modal Document Intelligence System
# Author: Spencer Purdy
# Description: An advanced document analysis tool that combines LayoutLMv3 for document understanding
# with efficient language models to extract information, summarize, and answer questions about documents.
# Optimized for Google Colab Pro performance.
import subprocess
import sys
import os
import io
from typing import List, Dict, Tuple, Optional
import json
import re
import hashlib
import time
# Install required packages function
def install_packages():
"""Install all required packages for the document intelligence system"""
packages = [
'gradio',
'transformers',
'torch',
'torchvision',
'Pillow',
'pytesseract',
'pdf2image',
'opencv-python',
'sentencepiece',
'accelerate'
]
print("Installing required packages...")
for package in packages:
subprocess.check_call([sys.executable, '-m', 'pip', 'install', package, '-q'])
# Install system dependencies for PDF processing and OCR
print("Installing system dependencies...")
subprocess.check_call(['apt-get', 'update', '-qq'])
subprocess.check_call(['apt-get', 'install', '-y', '-qq', 'poppler-utils', 'tesseract-ocr'])
# Try importing, install if needed
try:
import gradio as gr
from transformers import (
AutoProcessor, AutoModelForTokenClassification,
AutoTokenizer, AutoModelForSeq2SeqLM,
pipeline
)
import torch
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
import cv2
import numpy as np
except ImportError:
print("Installing required packages...")
install_packages()
# Re-import after installation
import gradio as gr
from transformers import (
AutoProcessor, AutoModelForTokenClassification,
AutoTokenizer, AutoModelForSeq2SeqLM,
pipeline
)
import torch
from PIL import Image
import pytesseract
from pdf2image import convert_from_path
import cv2
import numpy as np
# Configure device for optimal performance
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Model initialization with optimized settings
print("Loading models...")
# Load LayoutLMv3 for document structure understanding
print("Loading LayoutLMv3...")
layoutlm_processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=False)
layoutlm_model = AutoModelForTokenClassification.from_pretrained(
"microsoft/layoutlmv3-base",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
layoutlm_model.eval() # Set to evaluation mode for faster inference
# Load efficient T5 model for text generation (much faster than Phi-2)
print("Loading T5 model for summarization and Q&A...")
t5_model_name = "google/flan-t5-base" # 250M parameters, efficient and effective
t5_tokenizer = AutoTokenizer.from_pretrained(t5_model_name)
t5_model = AutoModelForSeq2SeqLM.from_pretrained(
t5_model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to(device)
t5_model.eval() # Set to evaluation mode
print("Models loaded successfully!")
class DocumentProcessor:
"""
Main document processing class that handles OCR, text extraction,
summarization, and question answering for various document types.
"""
def __init__(self):
"""Initialize the document processor with empty state"""
self.extracted_text = ""
self.document_metadata = {}
self.page_contents = []
self.processing_cache = {} # Cache for processed documents
def _get_file_hash(self, file_path: str) -> str:
"""Generate a hash for the file to use as cache key"""
with open(file_path, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
def process_pdf(self, pdf_path: str, max_pages: int = 20) -> List[Image.Image]:
"""
Convert PDF pages to images for OCR processing
Args:
pdf_path: Path to the PDF file
max_pages: Maximum number of pages to process (for memory management)
Returns:
List of PIL Images representing PDF pages
"""
try:
# Convert PDF to images with resolution optimization
images = convert_from_path(
pdf_path,
dpi=150, # Balance between quality and performance
first_page=1,
last_page=min(max_pages, 100) # Limit pages for memory
)
return images
except Exception as e:
print(f"Error processing PDF: {e}")
return []
def extract_text_from_image(self, image: Image.Image) -> Dict[str, any]:
"""
Extract text and layout information from an image using OCR
Args:
image: PIL Image to process
Returns:
Dictionary containing extracted text and metadata
"""
try:
# Resize image if too large to improve performance
max_dimension = 2000
if max(image.size) > max_dimension:
ratio = max_dimension / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Convert to numpy array for OCR
image_np = np.array(image)
# Perform OCR with Tesseract
ocr_config = '--oem 3 --psm 6' # Use LSTM engine with uniform block detection
ocr_data = pytesseract.image_to_data(
image_np,
output_type=pytesseract.Output.DICT,
config=ocr_config
)
# Extract words and bounding boxes
words = []
boxes = []
confidences = []
for i in range(len(ocr_data['text'])):
if ocr_data['text'][i].strip() and ocr_data['conf'][i] > 30: # Filter by confidence
words.append(ocr_data['text'][i])
boxes.append([
ocr_data['left'][i],
ocr_data['top'][i],
ocr_data['left'][i] + ocr_data['width'][i],
ocr_data['top'][i] + ocr_data['height'][i]
])
confidences.append(ocr_data['conf'][i])
# Join words to form complete text
text = ' '.join(words)
# Process with LayoutLMv3 for structure understanding (if text found)
structured_text = text
if words and len(words) < 400: # Limit for performance
try:
# Prepare inputs for LayoutLMv3
encoding = layoutlm_processor(
image,
words[:400], # Limit words
boxes=boxes[:400],
return_tensors="pt",
truncation=True,
padding="max_length",
max_length=512
)
# Move to device and run inference
encoding = {k: v.to(device) for k, v in encoding.items()}
with torch.no_grad():
outputs = layoutlm_model(**encoding)
# Get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
if isinstance(predictions, int):
predictions = [predictions]
# Structure text based on layout
structured_text = self._structure_text(words[:len(predictions)], boxes[:len(predictions)])
except Exception as e:
print(f"LayoutLM processing skipped: {e}")
structured_text = self._simple_structure_text(words, boxes)
else:
structured_text = self._simple_structure_text(words, boxes)
return {
'raw_text': text,
'words': words,
'boxes': boxes,
'structured_text': structured_text,
'num_words': len(words),
'avg_confidence': sum(confidences) / len(confidences) if confidences else 0
}
except Exception as e:
print(f"Error extracting text: {e}")
return {
'raw_text': "",
'words': [],
'boxes': [],
'structured_text': "",
'num_words': 0,
'avg_confidence': 0
}
def _simple_structure_text(self, words: List[str], boxes: List[List[int]]) -> str:
"""
Simple text structuring based on spatial layout
Groups words into lines based on vertical position
"""
if not words:
return ""
# Group words by lines
lines = []
current_line = []
last_y = None
for word, box in zip(words, boxes):
y_pos = box[1] # Top position
if last_y is None or abs(y_pos - last_y) < 15: # Same line threshold
current_line.append(word)
else:
if current_line:
lines.append(' '.join(current_line))
current_line = [word]
last_y = y_pos
if current_line:
lines.append(' '.join(current_line))
return '\n'.join(lines)
def _structure_text(self, words: List[str], boxes: List[List[int]]) -> str:
"""Enhanced text structuring with better line detection"""
return self._simple_structure_text(words, boxes)
def process_document(self, file_path: str) -> str:
"""
Process any document type (PDF or image) and extract text
Args:
file_path: Path to the document file
Returns:
Status message indicating success or failure
"""
# Reset state
self.extracted_text = ""
self.page_contents = []
self.document_metadata = {
'filename': os.path.basename(file_path),
'pages': 0,
'total_words': 0
}
# Check cache
file_hash = self._get_file_hash(file_path)
if file_hash in self.processing_cache:
cached_data = self.processing_cache[file_hash]
self.extracted_text = cached_data['text']
self.page_contents = cached_data['pages']
self.document_metadata = cached_data['metadata']
return f"β
Loaded from cache: {self.document_metadata['filename']}\n" \
f"π Pages: {self.document_metadata['pages']}\n" \
f"π Words: {self.document_metadata['total_words']}"
try:
start_time = time.time()
if file_path.lower().endswith('.pdf'):
# Process PDF document
images = self.process_pdf(file_path)
self.document_metadata['pages'] = len(images)
for i, image in enumerate(images):
print(f"Processing page {i+1}/{len(images)}...")
page_data = self.extract_text_from_image(image)
self.page_contents.append(page_data)
self.extracted_text += f"\n\n--- Page {i+1} ---\n\n"
self.extracted_text += page_data['structured_text']
self.document_metadata['total_words'] += page_data['num_words']
else:
# Process single image
image = Image.open(file_path).convert('RGB')
page_data = self.extract_text_from_image(image)
self.page_contents.append(page_data)
self.extracted_text = page_data['structured_text']
self.document_metadata['pages'] = 1
self.document_metadata['total_words'] = page_data['num_words']
# Cache the results
self.processing_cache[file_hash] = {
'text': self.extracted_text,
'pages': self.page_contents,
'metadata': self.document_metadata
}
processing_time = time.time() - start_time
if self.document_metadata['total_words'] == 0:
return f"β οΈ No text found in {self.document_metadata['filename']}. Please ensure the document contains readable text."
return f"β
Successfully processed {self.document_metadata['filename']}\n" \
f"π Pages: {self.document_metadata['pages']}\n" \
f"π Words extracted: {self.document_metadata['total_words']}\n" \
f"β±οΈ Processing time: {processing_time:.1f}s"
except Exception as e:
return f"β Error processing document: {str(e)}"
def summarize_document(self) -> str:
"""
Generate a concise summary of the document using T5 model
Returns:
Document summary or error message
"""
if not self.extracted_text:
return "No document has been processed yet. Please upload and process a document first."
try:
start_time = time.time()
# Prepare text for summarization (limit to manage tokens)
text_to_summarize = self.extracted_text[:2048]
# Create prompt for T5
prompt = f"Summarize the following document:\n\n{text_to_summarize}"
# Tokenize input
inputs = t5_tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(device)
# Generate summary
with torch.no_grad():
summary_ids = t5_model.generate(
inputs.input_ids,
max_length=150,
min_length=30,
num_beams=4,
length_penalty=2.0,
early_stopping=True
)
# Decode summary
summary = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
generation_time = time.time() - start_time
return f"{summary}\n\nβ±οΈ Generated in {generation_time:.1f}s"
except Exception as e:
return f"Error generating summary: {str(e)}"
def answer_question(self, question: str) -> str:
"""
Answer questions about the document using T5 model
Args:
question: User's question about the document
Returns:
Answer to the question
"""
if not self.extracted_text:
return "Please upload and process a document first."
if not question.strip():
return "Please enter a question."
try:
start_time = time.time()
# Prepare context and question
context = self.extracted_text[:1536] # Limit context
# Format prompt for T5
prompt = f"Answer the question based on the context.\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:"
# Tokenize
inputs = t5_tokenizer(
prompt,
return_tensors="pt",
max_length=1024,
truncation=True
).to(device)
# Generate answer
with torch.no_grad():
answer_ids = t5_model.generate(
inputs.input_ids,
max_length=100,
min_length=5,
num_beams=3,
temperature=0.7,
do_sample=True,
top_p=0.9
)
# Decode answer
answer = t5_tokenizer.decode(answer_ids[0], skip_special_tokens=True)
generation_time = time.time() - start_time
return f"{answer}\n\nβ±οΈ Generated in {generation_time:.1f}s"
except Exception as e:
return f"Error answering question: {str(e)}"
def extract_key_information(self) -> Dict[str, List[str]]:
"""
Extract key entities from the document using regex patterns
Returns:
Dictionary of extracted entities organized by type
"""
if not self.extracted_text:
return {"message": ["No document has been processed yet."]}
try:
entities = {
'dates': [],
'emails': [],
'phone_numbers': [],
'monetary_amounts': [],
'percentages': [],
'urls': []
}
# Date extraction patterns
date_patterns = [
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+\d{1,2},?\s+\d{4}\b',
r'\b\d{1,2}\s+(?:January|February|March|April|May|June|July|August|September|October|November|December|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+\d{4}\b'
]
for pattern in date_patterns:
matches = re.findall(pattern, self.extracted_text, re.IGNORECASE)
entities['dates'].extend(matches)
# Email extraction
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
entities['emails'] = re.findall(email_pattern, self.extracted_text)
# Phone number extraction (various formats)
phone_patterns = [
r'\b\+?1?\s*\(?([0-9]{3})\)?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})\b',
r'\b\d{3}[-.\s]\d{3}[-.\s]\d{4}\b'
]
for pattern in phone_patterns:
matches = re.findall(pattern, self.extracted_text)
if isinstance(matches[0], tuple) if matches else False:
entities['phone_numbers'].extend(['-'.join(match) for match in matches])
else:
entities['phone_numbers'].extend(matches)
# Monetary amount extraction
money_patterns = [
r'\$\s*[\d,]+\.?\d*',
r'USD\s*[\d,]+\.?\d*',
r'\b\d{1,3}(?:,\d{3})*(?:\.\d{2})?\s*(?:dollars?|USD)\b'
]
for pattern in money_patterns:
matches = re.findall(pattern, self.extracted_text, re.IGNORECASE)
entities['monetary_amounts'].extend(matches)
# Percentage extraction
percent_pattern = r'\b\d+\.?\d*\s*%'
entities['percentages'] = re.findall(percent_pattern, self.extracted_text)
# URL extraction
url_pattern = r'https?://(?:www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b(?:[-a-zA-Z0-9()@:%_\+.~#?&/=]*)'
entities['urls'] = re.findall(url_pattern, self.extracted_text)
# Clean up and deduplicate
for key in entities:
# Remove duplicates and limit to 10 items
unique_items = list(dict.fromkeys(entities[key])) # Preserves order
entities[key] = unique_items[:10]
# Remove empty categories
entities = {k: v for k, v in entities.items() if v}
if not entities:
entities = {"info": ["No specific entities found. The document may need better quality or contain different types of information."]}
return entities
except Exception as e:
return {"error": [f"Error extracting information: {str(e)}"]}
# Initialize global processor
processor = DocumentProcessor()
# Gradio interface handlers
def process_document_handler(file):
"""Handle document upload and processing"""
if file is None:
return "Please upload a document.", "", {}
# Process the document
status = processor.process_document(file)
# Get text preview
text_preview = processor.extracted_text[:1000] + "..." if len(processor.extracted_text) > 1000 else processor.extracted_text
# Extract key information
key_info = processor.extract_key_information()
return status, text_preview, key_info
def summarize_handler():
"""Handle document summarization request"""
return processor.summarize_document()
def qa_handler(question):
"""Handle question answering request"""
if not question:
return "Please enter a question."
return processor.answer_question(question)
def create_interface():
"""
Create the Gradio interface for the document intelligence system
"""
with gr.Blocks(title="Multi-Modal Document Intelligence System", theme=gr.themes.Soft()) as interface:
# Header
gr.Markdown("""
# π§ Multi-Modal Document Intelligence System
**Upload any document (PDF or image) and unlock its insights with AI!**
This advanced system combines:
- π **LayoutLMv3** for understanding document structure and layout
- π€ **Flan-T5** for intelligent summarization and question answering
- π **OCR Technology** for accurate text extraction from any document
### β¨ Features
- Upload PDFs or images (JPG, PNG, etc.)
- Automatic text extraction with layout understanding
- Intelligent document summarization
- Natural language Q&A about your documents
- Key information extraction (dates, emails, amounts, etc.)
""")
# Main interface layout
with gr.Row():
# Left column - Upload and processing
with gr.Column(scale=1):
file_input = gr.File(
label="π Upload Document",
file_types=[".pdf", ".png", ".jpg", ".jpeg", ".bmp", ".tiff"],
type="filepath"
)
process_btn = gr.Button("π Process Document", variant="primary", size="lg")
status_output = gr.Textbox(
label="π Processing Status",
lines=4,
interactive=False
)
gr.Markdown("### π Key Information Extracted")
key_info_output = gr.JSON(label="Extracted Entities", elem_id="key_info")
# Right column - Results and interaction
with gr.Column(scale=2):
text_preview = gr.Textbox(
label="π Document Text Preview",
lines=10,
max_lines=15,
interactive=False
)
with gr.Tab("π Summary"):
summary_btn = gr.Button("Generate Summary", variant="secondary")
summary_output = gr.Textbox(
label="Document Summary",
lines=8,
interactive=False
)
with gr.Tab("β Q&A"):
question_input = gr.Textbox(
label="Ask a question about the document",
placeholder="e.g., What are the main points? What dates are mentioned? What is the total amount?",
lines=2
)
qa_btn = gr.Button("Get Answer", variant="secondary")
answer_output = gr.Textbox(
label="Answer",
lines=6,
interactive=False
)
# Example questions
gr.Markdown("### π Example Questions")
gr.Examples(
examples=[
"What is the main topic of this document?",
"What dates are mentioned?",
"What is the total amount due?",
"Who are the key people mentioned?",
"What are the main findings?",
"Summarize the key points."
],
inputs=question_input
)
# Footer with instructions
gr.Markdown("""
---
### π― How to Use
1. **Upload** a PDF or image document
2. **Process** the document to extract text
3. **Review** the extracted text and key information
4. **Generate** a summary or ask questions
### π‘ Tips for Best Results
- Use clear, high-quality documents
- For images, ensure good lighting and contrast
- The system works with multiple languages
- Processing time depends on document size and complexity
---
π¨βπ» **Created by Spencer Purdy** | Computer Science @ Auburn University
[GitHub](https://github.com/spencercpurdy) | [LinkedIn](https://linkedin.com/in/spencerpurdy) | [Hugging Face](https://huggingface.co/spencercpurdy)
""")
# Connect event handlers
process_btn.click(
fn=process_document_handler,
inputs=file_input,
outputs=[status_output, text_preview, key_info_output]
)
summary_btn.click(
fn=summarize_handler,
inputs=[],
outputs=summary_output
)
qa_btn.click(
fn=qa_handler,
inputs=question_input,
outputs=answer_output
)
# Allow Enter key to submit questions
question_input.submit(
fn=qa_handler,
inputs=question_input,
outputs=answer_output
)
return interface
# Main execution
if __name__ == "__main__":
print("Starting Multi-Modal Document Intelligence System...")
# Create and launch the interface
interface = create_interface()
# Launch with public link
interface.launch(
debug=True,
share=True,
server_name="0.0.0.0",
server_port=7860
) |