import os import gradio as gr import requests import inspect import pandas as pd import asyncio from smolagents import ToolCallingAgent, InferenceClientModel, OpenAIServerModel from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent from huggingface_hub import login #h DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" #login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) openai_key = os.environ.get("OPENAI_API_KEY") search_tool = DuckDuckGoSearchTool() ##Tool 2 from smolagents import Tool from huggingface_hub import hf_hub_download import pandas as pd class ExcelAnalysisTool(Tool): name = "excel_analysis" description = ( "Loads an Excel file from the GAIA dataset on Hugging Face and calculates " "the total sales for items labeled as 'food', excluding drinks. " "Provide input as a string with the filename, e.g., 'sales_data.xlsx'." ) inputs = { "filename": { "type": "string", "description": "The name of the Excel file (e.g., 'sales_data.xlsx')" } } output_type = "string" repo_id = "gaia-benchmark/GAIA" def forward(self, filename: str) -> str: try: file_path = hf_hub_download( repo_id=self.repo_id, filename=filename, repo_type="dataset" ) df = pd.read_excel(file_path) food_sales = df[ (df['category'].str.lower() == 'food') & (df['item'].str.lower() != 'drinks') ] total_sales = food_sales['sales'].sum() return f"Total sales for food items: ${total_sales:.2f}" except FileNotFoundError: return "Error: The specified file was not found." except KeyError as e: return f"Error: Missing expected column in the Excel file: {str(e)}" except Exception as e: return f"An unexpected error occurred: {str(e)}" ##Tool 3 import wikipedia from smolagents import Tool class WikiTool(Tool): name = "wiki_tool" description = ( "Performs Wikipedia lookups. Actions supported: 'summary' and 'is_historical_country'." ) inputs = { "action": { "type": "string", "description": "The action to perform: 'summary' or 'is_historical_country'" }, "topic": { "type": "string", "description": "The topic or country name to look up" } } output_type = "string" def forward(self, action: str, topic: str) -> str: if action == "summary": return self.fetch_summary(topic) elif action == "is_historical_country": return self.is_historical_country(topic) else: return "Error: Unknown action. Use 'summary' or 'is_historical_country'." def fetch_summary(self, topic: str) -> str: try: return wikipedia.summary(topic, sentences=3) except wikipedia.DisambiguationError as e: return f"Disambiguation: {e.options[:5]}" except wikipedia.PageError: return "No page found." except Exception as e: return f"Unexpected error: {str(e)}" def is_historical_country(self, topic: str) -> str: try: summary = wikipedia.summary(topic, sentences=2).lower() keywords = [ "former country", "no longer exists", "historical country", "was a country", "defunct", "dissolved", "existed until", "disestablished", "merged into" ] return "yes" if any(k in summary for k in keywords) else "no" except: return "no" wiki_tool = WikiTool() excel_tool = ExcelAnalysisTool() async def run_and_submit_all(profile: gr.OAuthProfile | None): log_output = "" try: agent = ToolCallingAgent( tools=[search_tool, wiki_tool, excel_tool], model=OpenAIServerModel( model_id="gpt-4o", # ✅ valid OpenAI model name api_key=os.environ["OPENAI_API_KEY"] # ✅ securely load from environment ), max_steps=20, verbosity_level=2 ) except Exception as e: yield f"Error initializing agent: {e}", None, log_output return space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" questions_url = f"{DEFAULT_API_URL}/questions" try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: yield "Fetched questions list is empty or invalid format.", None, log_output return except Exception as e: yield f"Error fetching questions: {e}", None, log_output return results_log = [] answers_payload = [] loop = asyncio.get_event_loop() for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue log_output += f"🔍 Solving Task ID: {task_id}...\n" yield None, None, log_output try: system_prompt = ( """You must only reply with a single line: FINAL ANSWER: [your answer] Never include reasoning, markdown, Task Outcome, Explanation, or examples. NEVER use numbered points or extra formatting. If your answer is a string, write it in lowercase, no articles, no quotes. If your answer is a number, use digits only. If the answer is "no one" or "none", write exactly that. DO NOT provide any explanation or context. Just the line: FINAL ANSWER: ... """ ) full_prompt = system_prompt + f"Question: {question_text.strip()}" agent_result = await loop.run_in_executor(None, agent, full_prompt) # Extract final answer cleanly if isinstance(agent_result, dict) and "final_answer" in agent_result: final_answer = str(agent_result["final_answer"]).strip() elif isinstance(agent_result, str): response_text = agent_result.strip() # Remove known boilerplate if "Here is the final answer from your managed agent" in response_text: response_text = response_text.split(":", 1)[-1].strip() if "FINAL ANSWER:" in response_text: _, final_answer = response_text.rsplit("FINAL ANSWER:", 1) final_answer = final_answer.strip() else: final_answer = response_text else: final_answer = str(agent_result).strip() answers_payload.append({ "task_id": task_id, "submitted_answer": final_answer }) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": final_answer }) log_output += f"✅ Done: {task_id} — Answer: {final_answer[:60]}\n" yield None, None, log_output except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}" }) log_output += f"⛔️ Error: {task_id} — {e}\n" yield None, None, log_output if not answers_payload: yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output return username = profile.username if profile else "unknown" submit_url = f"{DEFAULT_API_URL}/submit" submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) results_df = pd.DataFrame(results_log) yield final_status, results_df, log_output except Exception as e: status_message = f"Submission Failed: {e}" results_df = pd.DataFrame(results_log) yield status_message, results_df, log_output with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Clone this space and define your agent logic. 2. Log in to your Hugging Face account. 3. Click 'Run Evaluation & Submit All Answers'. --- **Note:** The run may take time. Async is now used to improve responsiveness. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log]) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host_startup = os.getenv("SPACE_HOST") space_id_startup = os.getenv("SPACE_ID") if space_host_startup: print(f"✅ SPACE_HOST: https://{space_host_startup}.hf.space") if space_id_startup: print(f"✅ SPACE_ID: https://huggingface.co/spaces/{space_id_startup}") print("Launching Gradio Interface...") demo.launch(debug=True, share=False)