import os # Model paths BAIL_BERT_MODEL_PATH = "./models/bert/saved_bail_bert_model" FAIRNESS_BERT_MODEL_PATH = "./models/bert/saved_fairness_bert_model" BAIL_LOGREG_MODEL_PATH = "./models/logreg/bail_outcome/logreg_bail_outcome_model.joblib" BAIL_TFIDF_PATH = "./models/logreg/bail_outcome/tfidf_vectorizer.joblib" BAIL_SCALER_PATH = "./models/logreg/bail_outcome/feature_scaler.joblib" FAIRNESS_LOGREG_MODEL_PATH = "./models/logreg/fairness/fairness_logreg_best_model.joblib" FAIRNESS_TFIDF_PATH = "./models/logreg/fairness/fairness_tfidf_vectorizer.joblib" FAIRNESS_SCALER_PATH = "./models/logreg/fairness/fairness_feature_scaler.joblib" FAIRNESS_ENCODERS_PATH = "./models/logreg/fairness/fairness_label_encoders.joblib" FAIRNESS_XGB_MODEL_PATH = "./models/xgboost/fairness/fairness_xgb_best_model.joblib" FAIRNESS_XGB_TFIDF_PATH = "./models/xgboost/fairness/fairness_xgb_tfidf_vectorizer.joblib" FAIRNESS_XGB_SCALER_PATH = "./models/xgboost/fairness/fairness_xgb_feature_scaler.joblib" FAIRNESS_XGB_ENCODERS_PATH = "./models/xgboost/fairness/fairness_xgb_label_encoders.joblib" # Dataset path DATASET_PATH = "./indian_bail_judgments.json" # App configuration MAX_TEXT_LENGTH = 512 DEFAULT_CONFIDENCE_THRESHOLD = 0.5 # Model labels BAIL_OUTCOME_LABELS = ["Rejected", "Granted"] FAIRNESS_LABELS = ["Fair", "Potentially Biased"] # Feature options CRIME_TYPES = [ "Attempt to Murder", "Cyber Crime", "Domestic Violence", "Dowry Harassment", "Extortion", "Fraud or Cheating", "Kidnapping", "Murder", "Narcotics", "Others", "Sexual Offense", "Theft or Robbery" ] BAIL_TYPES = ["Regular", "Anticipatory", "Interim", "Transit", "Default"] GENDERS = ["Male", "Female", "Unknown", "Transgender"] REGIONS = ["Unknown", "North India", "South India", "East India", "West India", "Central India", "Northeast India"]