Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import os
|
4 |
+
import logging
|
5 |
+
import datetime
|
6 |
+
from langchain_community.document_loaders import PyPDFLoader
|
7 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
from langchain_community.vectorstores import Chroma
|
10 |
+
from huggingface_hub import InferenceClient, get_token
|
11 |
+
|
12 |
+
# Set up logging
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Set HF_HOME for caching Hugging Face assets in persistent storage
|
17 |
+
os.environ["HF_HOME"] = "/data/.huggingface"
|
18 |
+
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
19 |
+
|
20 |
+
# Define persistent storage directories
|
21 |
+
DATA_DIR = "/data" # Root persistent storage directory
|
22 |
+
DOCS_DIR = os.path.join(DATA_DIR, "documents") # Subdirectory for uploaded PDFs
|
23 |
+
CHROMA_DIR = os.path.join(DATA_DIR, "chroma_db") # Subdirectory for Chroma vector store
|
24 |
+
|
25 |
+
# Create directories if they don't exist
|
26 |
+
os.makedirs(DOCS_DIR, exist_ok=True)
|
27 |
+
os.makedirs(CHROMA_DIR, exist_ok=True)
|
28 |
+
|
29 |
+
# Initialize Cerebras InferenceClient
|
30 |
+
try:
|
31 |
+
token = get_token()
|
32 |
+
if not token:
|
33 |
+
logger.error("HF_TOKEN is not set in Space secrets")
|
34 |
+
client = None
|
35 |
+
else:
|
36 |
+
client = InferenceClient(
|
37 |
+
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
38 |
+
provider="cerebras",
|
39 |
+
token=token
|
40 |
+
)
|
41 |
+
logger.info("InferenceClient initialized successfully")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Failed to initialize InferenceClient: {str(e)}")
|
44 |
+
client = None
|
45 |
+
|
46 |
+
# Global variables for vector store
|
47 |
+
vectorstore = None
|
48 |
+
retriever = None
|
49 |
+
|
50 |
+
def list_uploaded_documents():
|
51 |
+
"""List all uploaded documents in the persistent storage"""
|
52 |
+
try:
|
53 |
+
if not os.path.exists(DOCS_DIR):
|
54 |
+
return []
|
55 |
+
|
56 |
+
files = os.listdir(DOCS_DIR)
|
57 |
+
pdf_files = [f for f in files if f.lower().endswith('.pdf')]
|
58 |
+
file_info = []
|
59 |
+
|
60 |
+
for file in pdf_files:
|
61 |
+
file_path = os.path.join(DOCS_DIR, file)
|
62 |
+
file_size = os.path.getsize(file_path)
|
63 |
+
file_time = os.path.getmtime(file_path)
|
64 |
+
file_info.append({
|
65 |
+
"name": file,
|
66 |
+
"size": f"{file_size // 1024} KB",
|
67 |
+
"date": datetime.datetime.fromtimestamp(file_time).strftime('%Y-%m-%d %H:%M:%S')
|
68 |
+
})
|
69 |
+
|
70 |
+
return file_info
|
71 |
+
except Exception as e:
|
72 |
+
logger.error(f"Error listing documents: {str(e)}")
|
73 |
+
return []
|
74 |
+
|
75 |
+
def get_document_filenames():
|
76 |
+
"""Get list of document filenames for dropdown"""
|
77 |
+
try:
|
78 |
+
if not os.path.exists(DOCS_DIR):
|
79 |
+
return []
|
80 |
+
|
81 |
+
files = os.listdir(DOCS_DIR)
|
82 |
+
pdf_files = [f for f in files if f.lower().endswith('.pdf')]
|
83 |
+
return pdf_files
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Error getting document filenames: {str(e)}")
|
86 |
+
return []
|
87 |
+
|
88 |
+
def delete_document(filename):
|
89 |
+
"""Delete a document from persistent storage and update the vector store"""
|
90 |
+
try:
|
91 |
+
if not filename:
|
92 |
+
return "No file selected for deletion"
|
93 |
+
|
94 |
+
file_path = os.path.join(DOCS_DIR, filename)
|
95 |
+
if not os.path.exists(file_path):
|
96 |
+
return f"File {filename} does not exist"
|
97 |
+
|
98 |
+
# Delete the file
|
99 |
+
os.remove(file_path)
|
100 |
+
logger.info(f"Deleted file {filename}")
|
101 |
+
|
102 |
+
# Refresh the vector store
|
103 |
+
refresh_status = refresh_vector_store()
|
104 |
+
|
105 |
+
return f"File {filename} deleted successfully! {refresh_status}"
|
106 |
+
except Exception as e:
|
107 |
+
logger.error(f"Error deleting document: {str(e)}")
|
108 |
+
return f"Error deleting document: {str(e)}"
|
109 |
+
|
110 |
+
def preview_document(filename, max_pages=3):
|
111 |
+
"""Generate a preview of the document's content"""
|
112 |
+
try:
|
113 |
+
if not filename:
|
114 |
+
return "No file selected for preview"
|
115 |
+
|
116 |
+
file_path = os.path.join(DOCS_DIR, filename)
|
117 |
+
if not os.path.exists(file_path):
|
118 |
+
return f"File {filename} does not exist"
|
119 |
+
|
120 |
+
loader = PyPDFLoader(file_path)
|
121 |
+
documents = loader.load()
|
122 |
+
|
123 |
+
# Limit preview to first few pages
|
124 |
+
preview_docs = documents[:max_pages]
|
125 |
+
preview_text = f"Preview of {filename} (first {len(preview_docs)} pages):\n\n"
|
126 |
+
|
127 |
+
for i, doc in enumerate(preview_docs):
|
128 |
+
preview_text += f"--- Page {i+1} ---\n{doc.page_content[:500]}...\n\n"
|
129 |
+
|
130 |
+
return preview_text
|
131 |
+
except Exception as e:
|
132 |
+
logger.error(f"Error previewing document: {str(e)}")
|
133 |
+
return f"Error previewing document: {str(e)}"
|
134 |
+
|
135 |
+
@spaces.GPU(duration=180) # Use GPU for vector store recreation
|
136 |
+
def refresh_vector_store():
|
137 |
+
"""Rebuild the vector store from all available documents"""
|
138 |
+
global vectorstore, retriever
|
139 |
+
try:
|
140 |
+
if not os.path.exists(DOCS_DIR):
|
141 |
+
logger.warning("Documents directory does not exist")
|
142 |
+
return "No documents directory found"
|
143 |
+
|
144 |
+
files = [f for f in os.listdir(DOCS_DIR) if f.lower().endswith('.pdf')]
|
145 |
+
if not files:
|
146 |
+
logger.warning("No PDF documents found")
|
147 |
+
|
148 |
+
# Clear the vector store
|
149 |
+
if os.path.exists(CHROMA_DIR):
|
150 |
+
import shutil
|
151 |
+
shutil.rmtree(CHROMA_DIR)
|
152 |
+
os.makedirs(CHROMA_DIR, exist_ok=True)
|
153 |
+
|
154 |
+
vectorstore = None
|
155 |
+
retriever = None
|
156 |
+
return "No PDF documents found. Vector store cleared."
|
157 |
+
|
158 |
+
# Load and process all documents
|
159 |
+
all_texts = []
|
160 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
161 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
162 |
+
|
163 |
+
for file in files:
|
164 |
+
file_path = os.path.join(DOCS_DIR, file)
|
165 |
+
try:
|
166 |
+
loader = PyPDFLoader(file_path)
|
167 |
+
documents = loader.load()
|
168 |
+
texts = text_splitter.split_documents(documents)
|
169 |
+
|
170 |
+
# Add source file metadata to each chunk
|
171 |
+
for i, text in enumerate(texts):
|
172 |
+
text.metadata["source"] = file
|
173 |
+
|
174 |
+
all_texts.extend(texts)
|
175 |
+
logger.info(f"Processed {file}, added {len(texts)} chunks")
|
176 |
+
except Exception as e:
|
177 |
+
logger.error(f"Error processing {file}: {str(e)}")
|
178 |
+
|
179 |
+
# Create new vector store
|
180 |
+
if all_texts:
|
181 |
+
# Remove existing vector store
|
182 |
+
if os.path.exists(CHROMA_DIR):
|
183 |
+
import shutil
|
184 |
+
shutil.rmtree(CHROMA_DIR)
|
185 |
+
os.makedirs(CHROMA_DIR, exist_ok=True)
|
186 |
+
|
187 |
+
vectorstore = Chroma.from_documents(
|
188 |
+
all_texts, embeddings, persist_directory=CHROMA_DIR
|
189 |
+
)
|
190 |
+
vectorstore.persist()
|
191 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
192 |
+
logger.info(f"Vector store recreated with {len(all_texts)} chunks from {len(files)} files")
|
193 |
+
return f"Vector store updated with {len(files)} documents!"
|
194 |
+
else:
|
195 |
+
logger.warning("No text chunks extracted from documents")
|
196 |
+
return "No content could be extracted from the PDF files"
|
197 |
+
except Exception as e:
|
198 |
+
logger.error(f"Error refreshing vector store: {str(e)}")
|
199 |
+
return f"Error refreshing vector store: {str(e)}"
|
200 |
+
|
201 |
+
@spaces.GPU(duration=180) # Use ZeroGPU (H200) for embedding generation, 180s timeout
|
202 |
+
def initialize_rag(file):
|
203 |
+
global vectorstore, retriever
|
204 |
+
try:
|
205 |
+
# Debug file object properties
|
206 |
+
logger.info(f"File object: {type(file)}, Attributes: {dir(file)}")
|
207 |
+
logger.info(f"File name: {file.name}")
|
208 |
+
|
209 |
+
# Validate file
|
210 |
+
if not file or not file.name:
|
211 |
+
logger.error("No file provided or invalid file name")
|
212 |
+
return "Error: No file provided or invalid file name"
|
213 |
+
|
214 |
+
# Verify temporary file exists and is accessible
|
215 |
+
if not os.path.exists(file.name):
|
216 |
+
logger.error(f"Temporary file {file.name} does not exist")
|
217 |
+
return f"Error: Temporary file {file.name} does not exist"
|
218 |
+
|
219 |
+
# Check temporary file size
|
220 |
+
file_size = os.path.getsize(file.name)
|
221 |
+
logger.info(f"Temporary file size: {file_size} bytes")
|
222 |
+
if file_size == 0:
|
223 |
+
logger.error("Uploaded file is empty")
|
224 |
+
return "Error: Uploaded file is empty"
|
225 |
+
|
226 |
+
# Save uploaded file to persistent storage
|
227 |
+
file_name = os.path.basename(file.name)
|
228 |
+
file_path = os.path.join(DOCS_DIR, file_name)
|
229 |
+
|
230 |
+
# Check if file exists and its size
|
231 |
+
should_save = True
|
232 |
+
if os.path.exists(file_path):
|
233 |
+
existing_size = os.path.getsize(file_path)
|
234 |
+
logger.info(f"Existing file {file_name} size: {existing_size} bytes")
|
235 |
+
if existing_size == 0:
|
236 |
+
logger.warning(f"Existing file {file_name} is empty, will overwrite")
|
237 |
+
else:
|
238 |
+
logger.info(f"File {file_name} already exists and is not empty, skipping save")
|
239 |
+
should_save = False
|
240 |
+
|
241 |
+
if should_save:
|
242 |
+
try:
|
243 |
+
with open(file.name, "rb") as src_file:
|
244 |
+
file_content = src_file.read()
|
245 |
+
logger.info(f"Read {len(file_content)} bytes from temporary file")
|
246 |
+
if not file_content:
|
247 |
+
logger.error("File content is empty after reading")
|
248 |
+
return "Error: File content is empty after reading"
|
249 |
+
with open(file_path, "wb") as dst_file:
|
250 |
+
dst_file.write(file_content)
|
251 |
+
dst_file.flush() # Ensure write completes
|
252 |
+
# Verify written file
|
253 |
+
written_size = os.path.getsize(file_path)
|
254 |
+
logger.info(f"Saved {file_name} to {file_path}, size: {written_size} bytes")
|
255 |
+
if written_size == 0:
|
256 |
+
logger.error(f"Failed to write {file_name}, file is empty")
|
257 |
+
return f"Error: Failed to write {file_name}, file is empty"
|
258 |
+
except PermissionError as e:
|
259 |
+
logger.error(f"Permission error writing to {file_path}: {str(e)}")
|
260 |
+
return f"Error: Permission denied writing to {file_path}"
|
261 |
+
except Exception as e:
|
262 |
+
logger.error(f"Error writing file to {file_path}: {str(e)}")
|
263 |
+
return f"Error writing file: {str(e)}"
|
264 |
+
|
265 |
+
# After saving the file, refresh the vector store
|
266 |
+
refresh_status = refresh_vector_store()
|
267 |
+
logger.info(f"Vector store refresh status: {refresh_status}")
|
268 |
+
|
269 |
+
return f"Document '{file_name}' processed and saved! {refresh_status}"
|
270 |
+
except Exception as e:
|
271 |
+
logger.error(f"Error processing document: {str(e)}")
|
272 |
+
return f"Error processing document: {str(e)}"
|
273 |
+
|
274 |
+
def query_documents(query, history, system_prompt, max_tokens, temperature):
|
275 |
+
global retriever, client
|
276 |
+
try:
|
277 |
+
if client is None:
|
278 |
+
logger.error("InferenceClient not initialized")
|
279 |
+
return history, "Error: InferenceClient not initialized. Check HF_TOKEN."
|
280 |
+
if retriever is None:
|
281 |
+
logger.error("No documents loaded")
|
282 |
+
return history, "Error: No documents loaded. Please upload a document first."
|
283 |
+
|
284 |
+
# Ensure history is a list of [user, assistant] lists
|
285 |
+
logger.info(f"History before processing: {history}")
|
286 |
+
if not isinstance(history, list):
|
287 |
+
logger.warning("History is not a list, resetting")
|
288 |
+
history = []
|
289 |
+
history = [[str(item[0]), str(item[1])] for item in history if isinstance(item, (list, tuple)) and len(item) == 2]
|
290 |
+
|
291 |
+
# Retrieve relevant documents
|
292 |
+
docs = retriever.get_relevant_documents(query)
|
293 |
+
|
294 |
+
# Format context with source information
|
295 |
+
context_parts = []
|
296 |
+
for doc in docs:
|
297 |
+
source = doc.metadata.get('source', 'unknown')
|
298 |
+
page = doc.metadata.get('page', 'unknown')
|
299 |
+
context_parts.append(f"[Source: {source}, Page: {page}]\n{doc.page_content}")
|
300 |
+
|
301 |
+
context = "\n\n".join(context_parts)
|
302 |
+
|
303 |
+
# Call Cerebras inference
|
304 |
+
logger.info("Calling Cerebras inference")
|
305 |
+
response = client.chat_completion(
|
306 |
+
messages=[
|
307 |
+
{"role": "system", "content": system_prompt},
|
308 |
+
{"role": "user", "content": f"Context: {context}\n\nQuery: {query}"}
|
309 |
+
],
|
310 |
+
max_tokens=int(max_tokens),
|
311 |
+
temperature=float(temperature),
|
312 |
+
stream=False
|
313 |
+
)
|
314 |
+
answer = response.choices[0].message.content
|
315 |
+
logger.info("Inference successful")
|
316 |
+
|
317 |
+
# Update chat history with list format
|
318 |
+
history.append([query, answer])
|
319 |
+
logger.info(f"History after append: {history}")
|
320 |
+
return history, "" # Clear the query input
|
321 |
+
except Exception as e:
|
322 |
+
logger.error(f"Error querying documents: {str(e)}")
|
323 |
+
return history, f"Error querying documents: {str(e)}"
|
324 |
+
|
325 |
+
# Load existing vector store on startup
|
326 |
+
try:
|
327 |
+
if os.path.exists(CHROMA_DIR):
|
328 |
+
logger.info("Loading existing vector store")
|
329 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
330 |
+
vectorstore = Chroma(persist_directory=CHROMA_DIR, embedding_function=embeddings)
|
331 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
332 |
+
logger.info(f"Loaded vector store from {CHROMA_DIR}")
|
333 |
+
except Exception as e:
|
334 |
+
logger.error(f"Error loading vector store: {str(e)}")
|
335 |
+
|
336 |
+
# Create the Gradio interface
|
337 |
+
with gr.Blocks() as demo:
|
338 |
+
gr.Markdown("# RAG Chatbot with Document Management")
|
339 |
+
|
340 |
+
# File management tab
|
341 |
+
with gr.Tab("Document Management"):
|
342 |
+
# File upload
|
343 |
+
with gr.Row():
|
344 |
+
file_input = gr.File(label="Upload Document (PDF)", file_types=[".pdf"])
|
345 |
+
file_output = gr.Textbox(label="Upload Status")
|
346 |
+
|
347 |
+
# Document listing and management
|
348 |
+
with gr.Row():
|
349 |
+
refresh_btn = gr.Button("Refresh Document List")
|
350 |
+
rebuild_vs_btn = gr.Button("Rebuild Vector Store")
|
351 |
+
|
352 |
+
doc_list = gr.Dataframe(
|
353 |
+
headers=["name", "size", "date"],
|
354 |
+
label="Uploaded Documents"
|
355 |
+
)
|
356 |
+
|
357 |
+
# Initialize dropdown with existing files
|
358 |
+
initial_files = get_document_filenames()
|
359 |
+
|
360 |
+
with gr.Row():
|
361 |
+
selected_doc = gr.Dropdown(
|
362 |
+
label="Select Document",
|
363 |
+
choices=initial_files,
|
364 |
+
allow_custom_value=True # This helps avoid errors when dropdown is updated
|
365 |
+
)
|
366 |
+
preview_btn = gr.Button("Preview Document")
|
367 |
+
delete_btn = gr.Button("Delete Selected Document", variant="stop")
|
368 |
+
|
369 |
+
doc_preview = gr.Textbox(label="Document Preview", lines=10)
|
370 |
+
delete_output = gr.Textbox(label="Operation Status")
|
371 |
+
|
372 |
+
# Chat interface tab
|
373 |
+
with gr.Tab("Chat"):
|
374 |
+
chatbot = gr.Chatbot(label="Conversation")
|
375 |
+
|
376 |
+
# Query and parameters
|
377 |
+
with gr.Row():
|
378 |
+
query_input = gr.Textbox(label="Query", placeholder="Ask about the document...")
|
379 |
+
system_prompt = gr.Textbox(
|
380 |
+
label="System Prompt",
|
381 |
+
value="You are a helpful assistant answering questions based on the provided document context. Only use the context provided to answer the question. If you don't know the answer, say so."
|
382 |
+
)
|
383 |
+
|
384 |
+
with gr.Row():
|
385 |
+
max_tokens = gr.Slider(label="Max Tokens", minimum=50, maximum=2000, value=500, step=50)
|
386 |
+
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=1.0, value=0.7, step=0.1)
|
387 |
+
|
388 |
+
# Buttons
|
389 |
+
with gr.Row():
|
390 |
+
submit_btn = gr.Button("Send")
|
391 |
+
clear_btn = gr.Button("Clear Chat")
|
392 |
+
|
393 |
+
# Event handlers for file management
|
394 |
+
def update_doc_list():
|
395 |
+
docs = list_uploaded_documents()
|
396 |
+
filenames = get_document_filenames()
|
397 |
+
return docs, gr.Dropdown(choices=filenames)
|
398 |
+
|
399 |
+
file_input.upload(initialize_rag, file_input, file_output).then(
|
400 |
+
update_doc_list, None, [doc_list, selected_doc]
|
401 |
+
)
|
402 |
+
|
403 |
+
refresh_btn.click(update_doc_list, None, [doc_list, selected_doc])
|
404 |
+
rebuild_vs_btn.click(refresh_vector_store, None, delete_output)
|
405 |
+
preview_btn.click(preview_document, selected_doc, doc_preview)
|
406 |
+
delete_btn.click(delete_document, selected_doc, delete_output).then(
|
407 |
+
update_doc_list, None, [doc_list, selected_doc]
|
408 |
+
)
|
409 |
+
|
410 |
+
# Event handlers for chat
|
411 |
+
submit_btn.click(
|
412 |
+
query_documents,
|
413 |
+
inputs=[query_input, chatbot, system_prompt, max_tokens, temperature],
|
414 |
+
outputs=[chatbot, query_input]
|
415 |
+
)
|
416 |
+
|
417 |
+
clear_btn.click(lambda: [], None, chatbot)
|
418 |
+
|
419 |
+
# Initialize document list on startup
|
420 |
+
demo.load(update_doc_list, None, [doc_list, selected_doc])
|
421 |
+
|
422 |
+
if __name__ == "__main__":
|
423 |
+
demo.launch()
|