Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,164 +0,0 @@
|
|
1 |
-
import queue
|
2 |
-
import threading
|
3 |
-
import spaces
|
4 |
-
import os
|
5 |
-
import io
|
6 |
-
import soundfile as sf
|
7 |
-
import gradio as gr
|
8 |
-
import numpy as np
|
9 |
-
import time
|
10 |
-
import pymupdf
|
11 |
-
import requests
|
12 |
-
from pathlib import Path
|
13 |
-
|
14 |
-
import torch
|
15 |
-
from huggingface_hub import InferenceClient
|
16 |
-
from kokoro import KModel, KPipeline
|
17 |
-
# -----------------------------------------------------------------------------
|
18 |
-
# Get default podcast materials, from Daily papers and one download
|
19 |
-
# -----------------------------------------------------------------------------
|
20 |
-
from papers import PaperManager
|
21 |
-
|
22 |
-
paper_manager = PaperManager()
|
23 |
-
top_papers = paper_manager.get_top_content()
|
24 |
-
|
25 |
-
PODCAST_SUBJECT = list(top_papers.values())[0]
|
26 |
-
|
27 |
-
os.makedirs("examples", exist_ok=True)
|
28 |
-
response = requests.get("https://www.palantir.com/assets/xrfr7uokpv1b/1wtb4LWF7XIuJisnMwH0XW/dc37fdda646a5df6c5b86f695ce990c0/NYT_-_Our_Oppenheimer_Moment-_The_Creation_of_A.I._Weapons.pdf")
|
29 |
-
with open("examples/Essay_Palantir.pdf", 'wb') as f:
|
30 |
-
f.write(response.content)
|
31 |
-
|
32 |
-
# -----------------------------------------------------------------------------
|
33 |
-
# LLM that writes the script (unchanged)
|
34 |
-
# -----------------------------------------------------------------------------
|
35 |
-
from prompts import SYSTEM_PROMPT
|
36 |
-
|
37 |
-
client = InferenceClient(
|
38 |
-
"meta-llama/Llama-3.3-70B-Instruct",
|
39 |
-
provider="cerebras",
|
40 |
-
token=os.getenv("HF_TOKEN"),
|
41 |
-
)
|
42 |
-
|
43 |
-
|
44 |
-
def generate_podcast_script(subject: str, steering_question: str | None = None) -> str:
|
45 |
-
"""Ask the LLM for a script of a podcast given by two hosts."""
|
46 |
-
messages = [
|
47 |
-
{"role": "system", "content": SYSTEM_PROMPT},
|
48 |
-
{"role": "user", "content": f"""Here is the topic: it's the top trending paper on Hugging Face daily papers today. You will need to analyze it by bringing profound insights.
|
49 |
-
{subject[:10000]}"""},
|
50 |
-
]
|
51 |
-
if steering_question and len(steering_question) > 0:
|
52 |
-
messages.append({"role": "user", "content": f"You could focus on this question: {steering_question}"})
|
53 |
-
|
54 |
-
response = client.chat_completion(
|
55 |
-
messages,
|
56 |
-
max_tokens=8156,
|
57 |
-
)
|
58 |
-
full_text = response.choices[0].message.content
|
59 |
-
assert "[JANE]" in full_text
|
60 |
-
dialogue_start_index = full_text.find("[JANE]")
|
61 |
-
podcast_text = full_text[dialogue_start_index:]
|
62 |
-
return podcast_text
|
63 |
-
|
64 |
-
# -----------------------------------------------------------------------------
|
65 |
-
# Kokoro TTS
|
66 |
-
# -----------------------------------------------------------------------------
|
67 |
-
CUDA_AVAILABLE = torch.cuda.is_available()
|
68 |
-
|
69 |
-
kmodel = KModel(repo_id='hexgrad/Kokoro-82M').to("cuda" if CUDA_AVAILABLE else "cpu").eval()
|
70 |
-
kpipeline = KPipeline(lang_code="a") # English voices
|
71 |
-
|
72 |
-
MALE_VOICE = "am_fenrir"
|
73 |
-
FEMALE_VOICE = "af_heart"
|
74 |
-
|
75 |
-
# Pre‑warm voices to avoid first‑call latency
|
76 |
-
for v in (MALE_VOICE, FEMALE_VOICE):
|
77 |
-
kpipeline.load_voice(v)
|
78 |
-
|
79 |
-
@spaces.GPU
|
80 |
-
def generate_podcast(url: str, pdf_path: str, topic: str):
|
81 |
-
if pdf_path:
|
82 |
-
with pymupdf.open(pdf_path) as pdf_doc:
|
83 |
-
material_text = ""
|
84 |
-
for page in pdf_doc:
|
85 |
-
material_text += page.get_text()
|
86 |
-
elif url:
|
87 |
-
response = requests.get(f'https://r.jina.ai/{url}')
|
88 |
-
material_text = response.text
|
89 |
-
else:
|
90 |
-
material_text = PODCAST_SUBJECT
|
91 |
-
|
92 |
-
# Generate podcast script!
|
93 |
-
podcast_script = generate_podcast_script(material_text, topic)
|
94 |
-
|
95 |
-
lines = [l for l in podcast_script.strip().splitlines() if l.strip()]
|
96 |
-
|
97 |
-
pipeline = kpipeline
|
98 |
-
pipeline_voice_female = pipeline.load_voice(FEMALE_VOICE)
|
99 |
-
pipeline_voice_male = pipeline.load_voice(MALE_VOICE)
|
100 |
-
|
101 |
-
speed = 1.
|
102 |
-
sr = 24000
|
103 |
-
|
104 |
-
for line in lines:
|
105 |
-
# Expect "[S1] ..." or "[S2] ..."
|
106 |
-
if line.startswith("[MIKE]"):
|
107 |
-
pipeline_voice = pipeline_voice_male
|
108 |
-
voice = MALE_VOICE
|
109 |
-
utterance = line[len("[MIKE]"):].strip()
|
110 |
-
elif line.startswith("[JANE]"):
|
111 |
-
pipeline_voice = pipeline_voice_female
|
112 |
-
voice = FEMALE_VOICE
|
113 |
-
utterance = line[len("[JANE]"):].strip()
|
114 |
-
else: # fallback
|
115 |
-
pipeline_voice = pipeline_voice_female
|
116 |
-
voice = FEMALE_VOICE
|
117 |
-
utterance = line
|
118 |
-
|
119 |
-
for _, ps, _ in pipeline(utterance, voice, speed):
|
120 |
-
t0 = time.time()
|
121 |
-
ref_s = pipeline_voice[len(ps) - 1]
|
122 |
-
audio_numpy = kmodel(ps, ref_s, speed).numpy()
|
123 |
-
yield (sr, audio_numpy)
|
124 |
-
t1 = time.time()
|
125 |
-
print(f"PROCESSED '{utterance}' in {int(t1-t0)} seconds. {audio_numpy.shape}")
|
126 |
-
|
127 |
-
EXAMPLES = [
|
128 |
-
["https://huggingface.co/blog/inference-providers-cohere", None, "How does using this compare with other inference solutions?"],
|
129 |
-
[None, str(Path("examples/Essay_Palantir.pdf")), "Make sure to keep some critic spirit in the analysis!"],
|
130 |
-
]
|
131 |
-
demo = gr.Interface(
|
132 |
-
title="Open NotebookLM 🎙️",
|
133 |
-
description=f"""Generates a podcast discussion between two hosts about the materials of your choice.
|
134 |
-
If you do not specify any source materials below, the podcast will be about the top trending [Daily paper](https://huggingface.co/papers/), '**{list(top_papers.keys())[0]}**'
|
135 |
-
Based on [Kokoro TTS](https://huggingface.co/hexgrad/Kokoro-82M), lightning-fast inference for [Llama-3.3-70B](meta-llama/Llama-3.3-70B-Instruct) by Cerebras, and uses elements from a NotebookLM app by [Gabriel Chua](https://huggingface.co/spaces/gabrielchua/open-notebooklm).""",
|
136 |
-
fn=generate_podcast,
|
137 |
-
inputs=[
|
138 |
-
gr.Textbox(
|
139 |
-
label="🔗 Type a Webpage URL to discuss it (Optional)",
|
140 |
-
placeholder="The URL you want to discuss the content for.",
|
141 |
-
),
|
142 |
-
gr.File(
|
143 |
-
label="Upload a PDF as discussion material (Optional)",
|
144 |
-
file_types=[".pdf"],
|
145 |
-
file_count="single",
|
146 |
-
),
|
147 |
-
gr.Textbox(label="🤔 Do you have a more specific topic or question on the materials?", placeholder="You can leave this blank."),
|
148 |
-
],
|
149 |
-
outputs=[
|
150 |
-
gr.Audio(
|
151 |
-
label="Listen to your podcast! 🔊",
|
152 |
-
format="wav",
|
153 |
-
streaming=True,
|
154 |
-
),
|
155 |
-
],
|
156 |
-
theme=gr.themes.Soft(),
|
157 |
-
submit_btn="Generate podcast 🎙️",
|
158 |
-
# clear_btn=gr.Button("🗑️"),
|
159 |
-
examples=EXAMPLES,
|
160 |
-
cache_examples=True,
|
161 |
-
)
|
162 |
-
|
163 |
-
if __name__ == "__main__":
|
164 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|