Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import InferenceClient
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Initialize Cerebras client for Llama 4
|
9 |
+
cerebras_client = InferenceClient(
|
10 |
+
"meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
11 |
+
provider="cerebras",
|
12 |
+
token=os.getenv("HF_TOKEN"),
|
13 |
+
)
|
14 |
+
|
15 |
+
# Global variables for models and tokenizers
|
16 |
+
en_es_tokenizer = None
|
17 |
+
en_es_model = None
|
18 |
+
es_en_tokenizer = None
|
19 |
+
es_en_model = None
|
20 |
+
|
21 |
+
@spaces.GPU(duration=60)
|
22 |
+
def translate_en_to_es(text):
|
23 |
+
global en_es_tokenizer, en_es_model
|
24 |
+
|
25 |
+
# Initialize EN->ES model if needed
|
26 |
+
if en_es_tokenizer is None or en_es_model is None:
|
27 |
+
en_es_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="spa_Latn")
|
28 |
+
en_es_model = AutoModelForSeq2SeqLM.from_pretrained(
|
29 |
+
"facebook/nllb-200-distilled-600M",
|
30 |
+
torch_dtype=torch.float16
|
31 |
+
).cuda()
|
32 |
+
|
33 |
+
# Translate
|
34 |
+
inputs = en_es_tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to("cuda")
|
35 |
+
with torch.no_grad():
|
36 |
+
outputs = en_es_model.generate(
|
37 |
+
**inputs,
|
38 |
+
forced_bos_token_id=en_es_tokenizer.convert_tokens_to_ids("spa_Latn"),
|
39 |
+
max_length=512,
|
40 |
+
num_beams=5,
|
41 |
+
early_stopping=True
|
42 |
+
)
|
43 |
+
|
44 |
+
translation = en_es_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
return translation
|
46 |
+
|
47 |
+
@spaces.GPU(duration=60)
|
48 |
+
def translate_es_to_en(text):
|
49 |
+
global es_en_tokenizer, es_en_model
|
50 |
+
|
51 |
+
# Initialize ES->EN model if needed
|
52 |
+
if es_en_tokenizer is None or es_en_model is None:
|
53 |
+
es_en_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", src_lang="spa_Latn", tgt_lang="eng_Latn")
|
54 |
+
es_en_model = AutoModelForSeq2SeqLM.from_pretrained(
|
55 |
+
"facebook/nllb-200-distilled-600M",
|
56 |
+
torch_dtype=torch.float16
|
57 |
+
).cuda()
|
58 |
+
|
59 |
+
# Translate
|
60 |
+
inputs = es_en_tokenizer(text, return_tensors="pt", max_length=512, truncation=True).to("cuda")
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = es_en_model.generate(
|
63 |
+
**inputs,
|
64 |
+
forced_bos_token_id=es_en_tokenizer.convert_tokens_to_ids("eng_Latn"),
|
65 |
+
max_length=512,
|
66 |
+
num_beams=5,
|
67 |
+
early_stopping=True
|
68 |
+
)
|
69 |
+
|
70 |
+
translation = es_en_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
71 |
+
return translation
|
72 |
+
|
73 |
+
def refine_with_llama(original_text, translation, direction, region="general", formality="neutral"):
|
74 |
+
if direction == "en_to_es":
|
75 |
+
refine_prompt = f"""You are an expert Spanish translator. Refine the following translation to address these common issues:
|
76 |
+
|
77 |
+
1. Context and ambiguity resolution
|
78 |
+
2. Cultural nuances and regional variations for {region}
|
79 |
+
3. Tone and formality ({formality})
|
80 |
+
4. Grammatical correctness
|
81 |
+
5. Idiomatic expressions
|
82 |
+
|
83 |
+
Original English: {original_text}
|
84 |
+
Initial Spanish translation: {translation}
|
85 |
+
Region preference: {region}
|
86 |
+
|
87 |
+
Provide only the refined Spanish translation, nothing else."""
|
88 |
+
else:
|
89 |
+
refine_prompt = f"""You are an expert English translator. Refine the following translation to address these common issues:
|
90 |
+
|
91 |
+
1. Context and ambiguity resolution
|
92 |
+
2. Cultural nuances and natural English expressions
|
93 |
+
3. Tone and formality ({formality})
|
94 |
+
4. Grammatical correctness
|
95 |
+
5. Idiomatic expressions
|
96 |
+
|
97 |
+
Original Spanish: {original_text}
|
98 |
+
Initial English translation: {translation}
|
99 |
+
Formality: {formality}
|
100 |
+
|
101 |
+
Provide only the refined English translation, nothing else."""
|
102 |
+
|
103 |
+
try:
|
104 |
+
response = cerebras_client.chat_completion(
|
105 |
+
messages=[{"role": "user", "content": refine_prompt}],
|
106 |
+
max_tokens=512,
|
107 |
+
temperature=0.3
|
108 |
+
)
|
109 |
+
return response.choices[0].message.content.strip()
|
110 |
+
except Exception as e:
|
111 |
+
return f"Refinement error: {str(e)}"
|
112 |
+
|
113 |
+
def complete_translation(text, direction, region, formality):
|
114 |
+
if not text.strip():
|
115 |
+
return "", ""
|
116 |
+
|
117 |
+
try:
|
118 |
+
# Step 1: Initial translation
|
119 |
+
if direction == "English to Spanish":
|
120 |
+
initial_translation = translate_en_to_es(text)
|
121 |
+
refined_translation = refine_with_llama(text, initial_translation, "en_to_es", region, formality)
|
122 |
+
else: # Spanish to English
|
123 |
+
initial_translation = translate_es_to_en(text)
|
124 |
+
refined_translation = refine_with_llama(text, initial_translation, "es_to_en", region, formality)
|
125 |
+
|
126 |
+
return initial_translation, refined_translation
|
127 |
+
except Exception as e:
|
128 |
+
return f"Error: {str(e)}", ""
|
129 |
+
|
130 |
+
# Create Gradio interface
|
131 |
+
with gr.Blocks(title="Bidirectional English-Spanish Translator") as demo:
|
132 |
+
gr.Markdown("# Bidirectional English-Spanish Translator")
|
133 |
+
gr.Markdown("Powered by NLLB-200 + Llama 4 via Cerebras for context-aware, culturally nuanced translations")
|
134 |
+
|
135 |
+
with gr.Row():
|
136 |
+
with gr.Column(scale=2):
|
137 |
+
input_text = gr.Textbox(
|
138 |
+
label="Text to Translate",
|
139 |
+
placeholder="Enter text in English or Spanish...",
|
140 |
+
lines=6
|
141 |
+
)
|
142 |
+
|
143 |
+
with gr.Row():
|
144 |
+
direction = gr.Dropdown(
|
145 |
+
choices=["English to Spanish", "Spanish to English"],
|
146 |
+
value="English to Spanish",
|
147 |
+
label="Translation Direction"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
region = gr.Dropdown(
|
152 |
+
choices=["general", "Mexico", "Spain", "Argentina", "Colombia", "Peru"],
|
153 |
+
value="general",
|
154 |
+
label="Spanish Variant (for ES translations)"
|
155 |
+
)
|
156 |
+
formality = gr.Dropdown(
|
157 |
+
choices=["neutral", "formal", "informal"],
|
158 |
+
value="neutral",
|
159 |
+
label="Formality Level"
|
160 |
+
)
|
161 |
+
|
162 |
+
translate_btn = gr.Button("Translate", variant="primary", size="lg")
|
163 |
+
|
164 |
+
with gr.Column(scale=2):
|
165 |
+
with gr.Row():
|
166 |
+
initial_output = gr.Textbox(
|
167 |
+
label="Initial Translation (NLLB-200)",
|
168 |
+
lines=3,
|
169 |
+
interactive=False
|
170 |
+
)
|
171 |
+
refined_output = gr.Textbox(
|
172 |
+
label="Refined Translation (Llama 4)",
|
173 |
+
lines=3,
|
174 |
+
interactive=False
|
175 |
+
)
|
176 |
+
|
177 |
+
# Connect function
|
178 |
+
translate_btn.click(
|
179 |
+
fn=complete_translation,
|
180 |
+
inputs=[input_text, direction, region, formality],
|
181 |
+
outputs=[initial_output, refined_output]
|
182 |
+
)
|
183 |
+
|
184 |
+
input_text.submit(
|
185 |
+
fn=complete_translation,
|
186 |
+
inputs=[input_text, direction, region, formality],
|
187 |
+
outputs=[initial_output, refined_output]
|
188 |
+
)
|
189 |
+
|
190 |
+
if __name__ == "__main__":
|
191 |
+
demo.launch()
|