Spaces:
Sleeping
Sleeping
| # Modified by Jialian Wu from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py | |
| import logging | |
| import math | |
| import fvcore.nn.weight_init as weight_init | |
| import torch | |
| import torch.nn as nn | |
| from functools import partial | |
| from detectron2.layers import CNNBlockBase, Conv2d, get_norm | |
| from detectron2.modeling.backbone.build import BACKBONE_REGISTRY | |
| from detectron2.layers import ShapeSpec | |
| from centernet.modeling.backbone.fpn_p5 import LastLevelP6P7_P5 | |
| import torch.utils.checkpoint as checkpoint | |
| from timm.models.layers import DropPath, Mlp, trunc_normal_ | |
| from detectron2.modeling.backbone.backbone import Backbone | |
| from .utils import ( | |
| PatchEmbed, | |
| add_decomposed_rel_pos, | |
| get_abs_pos, | |
| window_partition, | |
| window_unpartition, | |
| ) | |
| logger = logging.getLogger(__name__) | |
| __all__ = ["ViT"] | |
| class Attention(nn.Module): | |
| """Multi-head Attention block with relative position embeddings.""" | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads=8, | |
| qkv_bias=True, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| input_size=None, | |
| ): | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool: If True, add a learnable bias to query, key, value. | |
| rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| input_size (int or None): Input resolution for calculating the relative positional | |
| parameter size. | |
| """ | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.proj = nn.Linear(dim, dim) | |
| self.use_rel_pos = use_rel_pos | |
| if self.use_rel_pos: | |
| # initialize relative positional embeddings | |
| self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
| self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
| if not rel_pos_zero_init: | |
| trunc_normal_(self.rel_pos_h, std=0.02) | |
| trunc_normal_(self.rel_pos_w, std=0.02) | |
| def forward(self, x): | |
| B, H, W, _ = x.shape | |
| # qkv with shape (3, B, nHead, H * W, C) | |
| qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
| # q, k, v with shape (B * nHead, H * W, C) | |
| q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
| attn = (q * self.scale) @ k.transpose(-2, -1) | |
| if self.use_rel_pos: | |
| attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W)) | |
| attn = attn.softmax(dim=-1) | |
| x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1) | |
| x = self.proj(x) | |
| return x | |
| class ResBottleneckBlock(CNNBlockBase): | |
| """ | |
| The standard bottleneck residual block without the last activation layer. | |
| It contains 3 conv layers with kernels 1x1, 3x3, 1x1. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| bottleneck_channels, | |
| norm="LN", | |
| act_layer=nn.GELU, | |
| ): | |
| """ | |
| Args: | |
| in_channels (int): Number of input channels. | |
| out_channels (int): Number of output channels. | |
| bottleneck_channels (int): number of output channels for the 3x3 | |
| "bottleneck" conv layers. | |
| norm (str or callable): normalization for all conv layers. | |
| See :func:`layers.get_norm` for supported format. | |
| act_layer (callable): activation for all conv layers. | |
| """ | |
| super().__init__(in_channels, out_channels, 1) | |
| self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False) | |
| self.norm1 = get_norm(norm, bottleneck_channels) | |
| self.act1 = act_layer() | |
| self.conv2 = Conv2d( | |
| bottleneck_channels, | |
| bottleneck_channels, | |
| 3, | |
| padding=1, | |
| bias=False, | |
| ) | |
| self.norm2 = get_norm(norm, bottleneck_channels) | |
| self.act2 = act_layer() | |
| self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False) | |
| self.norm3 = get_norm(norm, out_channels) | |
| for layer in [self.conv1, self.conv2, self.conv3]: | |
| weight_init.c2_msra_fill(layer) | |
| for layer in [self.norm1, self.norm2]: | |
| layer.weight.data.fill_(1.0) | |
| layer.bias.data.zero_() | |
| # zero init last norm layer. | |
| self.norm3.weight.data.zero_() | |
| self.norm3.bias.data.zero_() | |
| def forward(self, x): | |
| out = x | |
| for layer in self.children(): | |
| out = layer(out) | |
| out = x + out | |
| return out | |
| class Block(nn.Module): | |
| """Transformer blocks with support of window attention and residual propagation blocks""" | |
| def __init__( | |
| self, | |
| dim, | |
| num_heads, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| drop_path=0.0, | |
| norm_layer=nn.LayerNorm, | |
| act_layer=nn.GELU, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| window_size=0, | |
| use_residual_block=False, | |
| input_size=None, | |
| ): | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| drop_path (float): Stochastic depth rate. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. If it equals 0, then not | |
| use window attention. | |
| use_residual_block (bool): If True, use a residual block after the MLP block. | |
| input_size (int or None): Input resolution for calculating the relative positional | |
| parameter size. | |
| """ | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| input_size=input_size if window_size == 0 else (window_size, window_size), | |
| ) | |
| self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer) | |
| self.window_size = window_size | |
| self.use_residual_block = use_residual_block | |
| if use_residual_block: | |
| # Use a residual block with bottleneck channel as dim // 2 | |
| self.residual = ResBottleneckBlock( | |
| in_channels=dim, | |
| out_channels=dim, | |
| bottleneck_channels=dim // 2, | |
| norm="LN", | |
| act_layer=act_layer, | |
| ) | |
| def forward(self, x): | |
| shortcut = x | |
| x = self.norm1(x) | |
| # Window partition | |
| if self.window_size > 0: | |
| H, W = x.shape[1], x.shape[2] | |
| x, pad_hw = window_partition(x, self.window_size) | |
| x = self.attn(x) | |
| # Reverse window partition | |
| if self.window_size > 0: | |
| x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
| x = shortcut + self.drop_path(x) | |
| x = x + self.drop_path(self.mlp(self.norm2(x))) | |
| if self.use_residual_block: | |
| x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1) | |
| return x | |
| class ViT(Backbone): | |
| """ | |
| This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`. | |
| "Exploring Plain Vision Transformer Backbones for Object Detection", | |
| https://arxiv.org/abs/2203.16527 | |
| """ | |
| def __init__( | |
| self, | |
| img_size=1024, | |
| patch_size=16, | |
| in_chans=3, | |
| embed_dim=768, | |
| depth=12, | |
| num_heads=12, | |
| mlp_ratio=4.0, | |
| qkv_bias=True, | |
| drop_path_rate=0.0, | |
| norm_layer=nn.LayerNorm, | |
| act_layer=nn.GELU, | |
| use_abs_pos=True, | |
| use_rel_pos=False, | |
| rel_pos_zero_init=True, | |
| window_size=0, | |
| window_block_indexes=(), | |
| residual_block_indexes=(), | |
| use_act_checkpoint=True, | |
| pretrain_img_size=224, | |
| pretrain_use_cls_token=True, | |
| out_feature="last_feat", | |
| ): | |
| """ | |
| Args: | |
| img_size (int): Input image size. | |
| patch_size (int): Patch size. | |
| in_chans (int): Number of input image channels. | |
| embed_dim (int): Patch embedding dimension. | |
| depth (int): Depth of ViT. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| drop_path_rate (float): Stochastic depth rate. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_abs_pos (bool): If True, use absolute positional embeddings. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. | |
| window_block_indexes (list): Indexes for blocks using window attention. | |
| residual_block_indexes (list): Indexes for blocks using conv propagation. | |
| use_act_checkpoint (bool): If True, use activation checkpointing. | |
| pretrain_img_size (int): input image size for pretraining models. | |
| pretrain_use_cls_token (bool): If True, pretrainig models use class token. | |
| out_feature (str): name of the feature from the last block. | |
| """ | |
| super().__init__() | |
| self.pretrain_use_cls_token = pretrain_use_cls_token | |
| self.use_act_checkpoint = use_act_checkpoint | |
| self.patch_embed = PatchEmbed( | |
| kernel_size=(patch_size, patch_size), | |
| stride=(patch_size, patch_size), | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| ) | |
| if use_abs_pos: | |
| # Initialize absolute positional embedding with pretrain image size. | |
| num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size) | |
| num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches | |
| self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) | |
| else: | |
| self.pos_embed = None | |
| # stochastic depth decay rule | |
| dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] | |
| self.blocks = nn.ModuleList() | |
| for i in range(depth): | |
| block = Block( | |
| dim=embed_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| drop_path=dpr[i], | |
| norm_layer=norm_layer, | |
| act_layer=act_layer, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| window_size=window_size if i in window_block_indexes else 0, | |
| use_residual_block=i in residual_block_indexes, | |
| input_size=(img_size // patch_size, img_size // patch_size), | |
| ) | |
| self.blocks.append(block) | |
| self._out_feature_channels = {out_feature: embed_dim} | |
| self._out_feature_strides = {out_feature: patch_size} | |
| self._out_features = [out_feature] | |
| if self.pos_embed is not None: | |
| trunc_normal_(self.pos_embed, std=0.02) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, nn.Linear): | |
| trunc_normal_(m.weight, std=0.02) | |
| if isinstance(m, nn.Linear) and m.bias is not None: | |
| nn.init.constant_(m.bias, 0) | |
| elif isinstance(m, nn.LayerNorm): | |
| nn.init.constant_(m.bias, 0) | |
| nn.init.constant_(m.weight, 1.0) | |
| def forward(self, x): | |
| x = self.patch_embed(x) | |
| if self.pos_embed is not None: | |
| x = x + get_abs_pos( | |
| self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) | |
| ) | |
| for blk in self.blocks: | |
| if self.use_act_checkpoint: | |
| x = checkpoint.checkpoint(blk, x) | |
| else: | |
| x = blk(x) | |
| return x.permute(0, 3, 1, 2) | |
| class ViT_FPN(Backbone): | |
| def __init__(self, bottom_up=None, top_block=None, out_channels=None, strides=None, vit_out_dim=None): | |
| super(ViT_FPN, self).__init__() | |
| assert isinstance(bottom_up, Backbone) | |
| self.bottom_up = bottom_up | |
| self.top_block = top_block | |
| self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides} | |
| self._out_features = list(self._out_feature_strides.keys()) | |
| self._out_feature_channels = {k: out_channels for k in self._out_features} | |
| self._size_divisibility = strides[2] | |
| self.maxpool = nn.MaxPool2d(2, stride=2) | |
| self.fpn_stride_16_8 = nn.ConvTranspose2d(vit_out_dim, vit_out_dim, 2, stride=2, bias=False) | |
| self.fpn_stride8_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False) | |
| self.fpn_stride8_norm1 = nn.LayerNorm(out_channels) | |
| self.fpn_stride8_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.fpn_stride8_norm2 = nn.LayerNorm(out_channels) | |
| self.fpn_stride16_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False) | |
| self.fpn_stride16_norm1 = nn.LayerNorm(out_channels) | |
| self.fpn_stride16_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.fpn_stride16_norm2 = nn.LayerNorm(out_channels) | |
| self.fpn_stride32_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False) | |
| self.fpn_stride32_norm1 = nn.LayerNorm(out_channels) | |
| self.fpn_stride32_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.fpn_stride32_norm2 = nn.LayerNorm(out_channels) | |
| def forward(self, x): | |
| vit_output_featuremap = self.bottom_up(x) | |
| stride8_feature = self.fpn_stride_16_8(vit_output_featuremap) | |
| stride8_feature = self.fpn_stride8_norm1(self.fpn_stride8_conv1(stride8_feature) | |
| .permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| stride8_feature = self.fpn_stride8_norm2(self.fpn_stride8_conv2(stride8_feature) | |
| .permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| stride32_feature = self.maxpool(vit_output_featuremap) | |
| stride32_feature = self.fpn_stride32_norm1(self.fpn_stride32_conv1(stride32_feature) | |
| .permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| stride32_feature = self.fpn_stride32_norm2(self.fpn_stride32_conv2(stride32_feature) | |
| .permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| stride16_feature = self.fpn_stride16_norm1(self.fpn_stride16_conv1(vit_output_featuremap). | |
| permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| stride16_feature = self.fpn_stride16_norm2(self.fpn_stride16_conv2(stride16_feature) | |
| .permute(0, 2, 3, 1)).permute(0, 3, 1, 2) | |
| results = [stride8_feature, stride16_feature, stride32_feature] | |
| results.extend(self.top_block(stride32_feature)) | |
| assert len(self._out_features) == len(results) | |
| fpn_out = {f: res for f, res in zip(self._out_features, results)} | |
| return fpn_out | |
| def size_divisibility(self): | |
| return self._size_divisibility | |
| def output_shape(self): | |
| return { | |
| name: ShapeSpec( | |
| channels=self._out_feature_channels[name], stride=self._out_feature_strides[name] | |
| ) | |
| for name in self._out_features | |
| } | |
| def build_vit_fpn_backbone(cfg, input_shape: ShapeSpec): | |
| embed_dim = 768 | |
| vit_out_dim = embed_dim | |
| bottom_up = ViT( # Single-scale ViT backbone | |
| img_size=1024, | |
| patch_size=16, | |
| embed_dim=embed_dim, | |
| depth=12, | |
| num_heads=12, | |
| drop_path_rate=0.1, | |
| window_size=14, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| window_block_indexes=[ | |
| # 2, 5, 8 11 for global attention | |
| 0, | |
| 1, | |
| 3, | |
| 4, | |
| 6, | |
| 7, | |
| 9, | |
| 10, | |
| ], | |
| residual_block_indexes=[], | |
| use_act_checkpoint=cfg.USE_ACT_CHECKPOINT, | |
| use_rel_pos=True, | |
| out_feature="last_feat",) | |
| out_channels = cfg.MODEL.FPN.OUT_CHANNELS | |
| assert out_channels == 256 or out_channels == 768 or out_channels == 1024 | |
| backbone = ViT_FPN(bottom_up=bottom_up, | |
| top_block=LastLevelP6P7_P5(out_channels, out_channels), | |
| out_channels=out_channels, | |
| strides=[8, 16, 32, 64, 128], | |
| vit_out_dim=vit_out_dim) | |
| return backbone | |
| def build_vit_fpn_backbone_large(cfg, input_shape: ShapeSpec): | |
| window_block_indexes = (list(range(0, 5)) + list(range(6, 11)) + list(range(12, 17)) + list(range(18, 23))) | |
| embed_dim = 1024 | |
| vit_out_dim = embed_dim | |
| bottom_up = ViT( # Single-scale ViT backbone | |
| img_size=1024, | |
| patch_size=16, | |
| embed_dim=embed_dim, | |
| depth=24, | |
| num_heads=16, | |
| drop_path_rate=0.4, | |
| window_size=14, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| window_block_indexes=window_block_indexes, | |
| residual_block_indexes=[], | |
| use_act_checkpoint=cfg.USE_ACT_CHECKPOINT, | |
| use_rel_pos=True, | |
| out_feature="last_feat",) | |
| out_channels = cfg.MODEL.FPN.OUT_CHANNELS | |
| assert out_channels == 256 or out_channels == 768 or out_channels == 1024 | |
| backbone = ViT_FPN(bottom_up=bottom_up, | |
| top_block=LastLevelP6P7_P5(out_channels, out_channels), | |
| out_channels=out_channels, | |
| strides=[8, 16, 32, 64, 128], | |
| vit_out_dim=vit_out_dim) | |
| return backbone | |
| def build_vit_fpn_backbone_huge(cfg, input_shape: ShapeSpec): | |
| window_block_indexes = (list(range(0, 7)) + list(range(8, 15)) + list(range(16, 23)) + list(range(24, 31))) | |
| embed_dim = 1280 | |
| vit_out_dim = embed_dim | |
| bottom_up = ViT( # Single-scale ViT backbone | |
| img_size=1024, | |
| patch_size=16, | |
| embed_dim=embed_dim, | |
| depth=32, | |
| num_heads=16, | |
| drop_path_rate=0.5, | |
| window_size=14, | |
| mlp_ratio=4, | |
| qkv_bias=True, | |
| norm_layer=partial(nn.LayerNorm, eps=1e-6), | |
| window_block_indexes=window_block_indexes, | |
| residual_block_indexes=[], | |
| use_act_checkpoint=cfg.USE_ACT_CHECKPOINT, | |
| use_rel_pos=True, | |
| out_feature="last_feat",) | |
| out_channels = cfg.MODEL.FPN.OUT_CHANNELS | |
| assert out_channels == 256 or out_channels == 768 or out_channels == 1024 | |
| backbone = ViT_FPN(bottom_up=bottom_up, | |
| top_block=LastLevelP6P7_P5(out_channels, out_channels), | |
| out_channels=out_channels, | |
| strides=[8, 16, 32, 64, 128], | |
| vit_out_dim=vit_out_dim) | |
| return backbone | |