File size: 6,824 Bytes
a4de739
da3acda
3035463
a4de739
3035463
da3acda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37c6637
da3acda
3035463
da3acda
 
37c6637
 
 
da3acda
 
3035463
da3acda
 
 
 
 
a4de739
3035463
da3acda
3035463
 
da3acda
 
3035463
 
da3acda
 
3035463
45b666a
 
 
 
3035463
 
 
 
 
 
45b666a
3035463
 
 
 
 
da3acda
3035463
 
 
 
 
45b666a
3035463
 
 
45b666a
3035463
45b666a
3035463
 
da3acda
 
 
 
 
45b666a
 
da3acda
 
 
 
 
22a278f
 
da3acda
 
 
22a278f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da3acda
22a278f
 
 
 
 
 
3035463
 
 
da3acda
22a278f
 
da3acda
 
 
 
 
 
 
 
 
3035463
 
da3acda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035463
 
 
a4de739
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModel
import torch

# --- Model Loading ---
tokenizer_splade = None
model_splade = None
tokenizer_unicoil = None
model_unicoil = None

# Load SPLADE v3 model
try:
    tokenizer_splade = AutoTokenizer.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-selfdistil")
    model_splade.eval() # Set to evaluation mode for inference
    print("SPLADE v3 model loaded successfully!")
except Exception as e:
    print(f"Error loading SPLADE model: {e}")
    print("Please ensure you have accepted any user access agreements on the Hugging Face Hub page for 'naver/splade-cocondenser-selfdistil'.")

# Load UNICOIL model for binary sparse encoding
# Load UNICOIL model for binary sparse encoding
try:
    unicoil_model_name = "castorini/unicoil-msmarco-passage"
    tokenizer_unicoil = AutoTokenizer.from_pretrained(unicoil_model_name)
    # --- FIX IS HERE ---
    model_unicoil = AutoModelForMaskedLM.from_pretrained(unicoil_model_name)
    # -------------------
    model_unicoil.eval() # Set to evaluation mode for inference
    print(f"UNICOIL model '{unicoil_model_name}' loaded successfully!")
except Exception as e:
    print(f"Error loading UNICOIL model: {e}")
    print(f"Please ensure '{unicoil_model_name}' is accessible (check Hugging Face Hub for potential agreements).")


# --- Core Representation Functions ---

def get_splade_representation(text):
    if tokenizer_splade is None or model_splade is None:
        return "SPLADE model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_splade(text, return_tensors="pt", padding=True, truncation=True)
    inputs = {k: v.to(model_splade.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_splade(**inputs)

    if hasattr(output, 'logits'):
        splade_vector = torch.max(
            torch.log(1 + torch.relu(output.logits)) * inputs['attention_mask'].unsqueeze(-1),
            dim=1
        )[0].squeeze()
    else:
        return "Model output structure not as expected for SPLADE. 'logits' not found."

    indices = torch.nonzero(splade_vector).squeeze().cpu().tolist()
    if not isinstance(indices, list):
        indices = [indices]

    values = splade_vector[indices].cpu().tolist()
    token_weights = dict(zip(indices, values))

    meaningful_tokens = {}
    for token_id, weight in token_weights.items():
        decoded_token = tokenizer_splade.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            meaningful_tokens[decoded_token] = weight

    sorted_representation = sorted(meaningful_tokens.items(), key=lambda item: item[1], reverse=True)

    formatted_output = "SPLADE Representation (All Non-Zero Terms):\n"
    if not sorted_representation:
        formatted_output += "No significant terms found for this input.\n"
    else:
        for term, weight in sorted_representation:
            formatted_output += f"- **{term}**: {weight:.4f}\n"

    formatted_output += "\n--- Raw SPLADE Vector Info ---\n"
    formatted_output += f"Total non-zero terms in vector: {len(indices)}\n"
    formatted_output += f"Sparsity: {1 - (len(indices) / tokenizer_splade.vocab_size):.2%}\n"

    return formatted_output




def get_unicoil_binary_representation(text):
    if tokenizer_unicoil is None or model_unicoil is None:
        return "UNICOIL model is not loaded. Please check the console for loading errors."

    inputs = tokenizer_unicoil(text, return_tensors="pt", padding=True, truncation=True)
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    inputs = {k: v.to(model_unicoil.device) for k, v in inputs.items()}

    with torch.no_grad():
        output = model_unicoil(**inputs)

    if not hasattr(output, "logits"):
        return "UNICOIL model output structure not as expected. 'logits' not found."

    logits = output.logits.squeeze(0)  # [seq_len, vocab_size]
    token_ids = input_ids.squeeze(0)   # [seq_len]
    mask = attention_mask.squeeze(0)   # [seq_len]

    transformed_scores = torch.log(1 + torch.exp(logits))  # softplus
    token_scores = transformed_scores[range(len(token_ids)), token_ids]  # only scores for input tokens
    token_scores = token_scores * mask  # mask out padding

    # Binarize: threshold scores > 0.5 (tune as needed)
    binary_mask = (token_scores > 0.5)
    activated_token_ids = token_ids[binary_mask].cpu().tolist()

    # Map token ids to strings
    binary_terms = {}
    for token_id in activated_token_ids:
        decoded_token = tokenizer_unicoil.decode([token_id])
        if decoded_token not in ["[CLS]", "[SEP]", "[PAD]", "[UNK]"] and len(decoded_token.strip()) > 0:
            binary_terms[decoded_token] = 1

    sorted_binary_terms = sorted(binary_terms.items(), key=lambda item: item[0])

    formatted_output = "UNICOIL Binary Sparse Representation (Activated Terms):\n"
    if not sorted_binary_terms:
        formatted_output += "No significant terms activated for this input.\n"
    else:
        for i, (term, _) in enumerate(sorted_binary_terms):
            if i >= 50:
                formatted_output += f"...and {len(sorted_binary_terms) - 50} more terms.\n"
                break
            formatted_output += f"- **{term}**\n"

    formatted_output += "\n--- Raw Binary Sparse Vector Info ---\n"
    formatted_output += f"Total activated terms: {len(sorted_binary_terms)}\n"
    formatted_output += f"Sparsity: {1 - (len(sorted_binary_terms) / tokenizer_unicoil.vocab_size):.2%}\n"

    return formatted_output




# --- Unified Prediction Function for Gradio ---
def predict_representation(model_choice, text):
    if model_choice == "SPLADE":
        return get_splade_representation(text)
    elif model_choice == "UNICOIL (Binary Sparse)":
        return get_unicoil_binary_representation(text)
    else:
        return "Please select a model."

# --- Gradio Interface Setup ---
demo = gr.Interface(
    fn=predict_representation,
    inputs=[
        gr.Radio(
            ["SPLADE", "UNICOIL (Binary Sparse)"], # Added UNICOIL option
            label="Choose Representation Model",
            value="SPLADE" # Default selection
        ),
        gr.Textbox(
            lines=5,
            label="Enter your query or document text here:",
            placeholder="e.g., Why is Padua the nicest city in Italy?"
        )
    ],
    outputs=gr.Markdown(),
    title="🌌 Sparse and Binary Sparse Representation Generator",
    description="Enter any text to see its SPLADE sparse vector or UNICOIL binary sparse representation.",
    allow_flagging="never"
)

# Launch the Gradio app
demo.launch()