from fastapi import FastAPI, HTTPException from pydantic import BaseModel from transformers import AutoTokenizer, AutoModel import torch from torch.nn.functional import F import logging logging.basicConfig(level=logging.INFO) logger=logging.getLogger(__name__) logger.info("Server Starting") try: logger.info("Loading model") MODEL_NAME = "Sid-the-sloth/leetcode_unixcoder_final" device="cpu" tokenizer=AutoTokenizer.from_pretrained(MODEL_NAME) model=AutoModel.from_pretrained(MODEL_NAME) model.to(device) model.eval() logger.info("Model Loaded") except: logger.error("Failed to load Model") model=None tokenizer=None app=FastAPI() #Req and Response Pydantic models class EmbedRequest(BaseModel): text : str class EmbedResponse(BaseModel): embedding: list[float] def mean_pooling(model_output, attention_mask): """ Performs mean pooling on the last hidden state of the model. This turns token-level embeddings into a single sentence-level embedding. """ token_embeddings = model_output.last_hidden_state input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @app.get("/") def root_status(): return {"status":"ok","model":model is not None} @app.post("/embed",response_model=EmbedResponse) def get_embedding(request: EmbedRequest): if not model or not tokenizer: HTTPException(status_code=503,detail="/Tokenizer could not be loaded") try: encoded_input = tokenizer(request.text, padding=True, truncation=True, return_tensors='pt').to(device) model_output = model(**encoded_input) # embedding=model.encode(request.text).tolist() sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask']) normalized_embedding = F.normalize(sentence_embedding, p=2, dim=1) embedding_list = normalized_embedding[0].tolist() return EmbedResponse(embedding=embedding_list) except Exception as e: logger.error("Error during embedding generation %s",e) return HTTPException(status_code=500,detail="Error generating embeddings")