Commit
·
8ebacc3
1
Parent(s):
df5822b
loaded model using AutoModel and manual pooling
Browse files
app.py
CHANGED
@@ -55,13 +55,13 @@ def get_embedding(request: EmbedRequest):
|
|
55 |
try:
|
56 |
encoded_input = tokenizer(request.text, padding=True, truncation=True, return_tensors='pt').to(device)
|
57 |
model_output = model(**encoded_input)
|
58 |
-
embedding=model.encode(request.text).tolist()
|
59 |
sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
|
60 |
|
61 |
normalized_embedding = F.normalize(sentence_embedding, p=2, dim=1)
|
62 |
|
63 |
embedding_list = normalized_embedding[0].tolist()
|
64 |
-
return EmbedResponse(embedding=
|
65 |
except Exception as e:
|
66 |
logger.error("Error during embedding generation %s",e)
|
67 |
return HTTPException(status_code=500,detail="Error generating embeddings")
|
|
|
55 |
try:
|
56 |
encoded_input = tokenizer(request.text, padding=True, truncation=True, return_tensors='pt').to(device)
|
57 |
model_output = model(**encoded_input)
|
58 |
+
# embedding=model.encode(request.text).tolist()
|
59 |
sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
|
60 |
|
61 |
normalized_embedding = F.normalize(sentence_embedding, p=2, dim=1)
|
62 |
|
63 |
embedding_list = normalized_embedding[0].tolist()
|
64 |
+
return EmbedResponse(embedding=embedding_list)
|
65 |
except Exception as e:
|
66 |
logger.error("Error during embedding generation %s",e)
|
67 |
return HTTPException(status_code=500,detail="Error generating embeddings")
|