File size: 1,173 Bytes
b5db444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
import logging

logging.basicConfig(level=logging.INFO)
logger=logging.getLogger(__name__)

logger.info("Server Starting")
try:
    logger.info("Loading model")
    model=SentenceTransformer("Sid-the-sloth/leetcode_unixcoder_final")
    logger.info("Model Loaded")
except:
    logger.error("Failed to load Model")
    model=None

app=FastAPI()

#Req and Response Pydantic models
class EmbedRequest(BaseModel):
    text : str

class EmbedResponse(BaseModel):
    embedding: list[float]

@app.get("/")
def root_status():
    return {"status":"ok","model":model is not None}

@app.post("/embed",response_model=EmbedResponse)
def get_embedding(request: EmbedRequest):
    if model is None:
        HTTPException(status_code=503,detail="Model could not be loaded")
    try:
        embedding=model.encode(request.text).tolist()
        return EmbedResponse(embedding=embedding)
    except Exception as e:
        logger.error("Error during embedding generation %s",e)
        return HTTPException(status_code=500,detail="Error generating embeddings")