|
import pandas as pd
|
|
import numpy as np
|
|
import os
|
|
|
|
DATA_PATH = "./data/processed/merged_features.csv"
|
|
SEQ_LEN = 30
|
|
SAVE_PATH = "./test_input.csv"
|
|
|
|
if not os.path.exists(DATA_PATH):
|
|
raise FileNotFoundError(f"β Cannot find data file at {DATA_PATH}")
|
|
|
|
df = pd.read_csv(DATA_PATH)
|
|
df = df.select_dtypes(include=[np.number]).dropna()
|
|
data = df.values
|
|
|
|
if len(data) < SEQ_LEN:
|
|
raise ValueError(f"β Not enough data: Need at least {SEQ_LEN} rows for one input sequence.")
|
|
|
|
sample = data[:SEQ_LEN]
|
|
|
|
np.savetxt(SAVE_PATH, sample, delimiter=",")
|
|
print(f"β
Test input saved to: {SAVE_PATH}")
|
|
print(f"βΉοΈ Shape of saved data: {sample.shape}")
|
|
|