from huggingface_hub import InferenceClient from resume import data import markdowm as md import gradio as gr import base64 import datetime import os # Initialize the model client client = InferenceClient( model="mistralai/Mixtral-8x7B-Instruct-v0.1", token=os.getenv("token") ) # Chatbot response function with integrated system message def respond( message, history: list[tuple[str, str]], max_tokens=1024, temperature=0.4, top_p=0.95, ): system_message = { "role": "system", "content": ( f"Act as SARATH and respond to the user's questions professionally. SARATH is a dedicated BTech graduate student and passionate to join in AI roles actively seeking a job. Your name is SARATH. " f"Here is SARATH’s background:```{data}```. Only answer questions using the information provided here, and strictly use only the links found in this data. " f"If an answer isn’t available within this information, notify the user politely and suggest they reach out via LinkedIn for further assistance. " f"Responses should be clear, professional, and strictly in English. Avoid giving random or empty responses at all times." ) } messages = [system_message] # Add chat history for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Add current message messages.append({"role": "user", "content": message}) response = "" # Streaming safe decoding for message_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if not hasattr(message_chunk, "choices") or not message_chunk.choices: continue delta = message_chunk.choices[0].delta if not delta or not hasattr(delta, "content"): continue token = delta.get("content", "") response += token yield response if not response.strip(): yield "I'm sorry, I couldn't generate a response based on the current data." print(f"{datetime.datetime.now()}::{messages[-1]['content']}->{response}\n") # Encode image to base64 def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') # Load and encode logos github_logo_encoded = encode_image("Images/github-logo.png") linkedin_logo_encoded = encode_image("Images/linkedin-logo.png") website_logo_encoded = encode_image("Images/ai-logo.png") # Gradio interface with gr.Blocks(theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Roboto Mono")]), css='footer {visibility: hidden}') as main: gr.Markdown(md.title) with gr.Tabs(): with gr.TabItem("My2.0", visible=True, interactive=True): gr.ChatInterface( respond, chatbot=gr.Chatbot(height=500), examples=[ "Tell me about yourself", 'Can you walk me through some of your recent projects and explain the role you played in each?', "What specific skills do you bring to the table that would benefit our company's AI/ML initiatives?", "How do you stay updated with the latest trends and advancements in AI and Machine Learning?", ] ) gr.Markdown(md.description) with gr.TabItem("Resume", visible=True, interactive=True): gr.Markdown(data) gr.HTML(md.footer.format(github_logo_encoded, linkedin_logo_encoded, website_logo_encoded)) if __name__ == "__main__": main.launch(share=True)