File size: 3,833 Bytes
7c53e62
eab216c
 
c9f16fe
 
eab216c
d75090c
eab216c
d75090c
eab216c
d75090c
eab216c
d75090c
eab216c
 
d75090c
eab216c
c9f16fe
 
 
 
 
d75090c
c9f16fe
 
 
 
eab216c
c9f16fe
d75090c
 
 
 
eab216c
 
 
c9f16fe
eab216c
c9f16fe
eab216c
c9f16fe
 
 
 
 
 
 
eab216c
c9f16fe
eab216c
d75090c
eab216c
d75090c
c9f16fe
 
 
 
d75090c
eab216c
 
d75090c
eab216c
c9f16fe
 
 
 
 
 
 
 
 
 
 
 
d75090c
 
c9f16fe
 
 
 
 
d75090c
c9f16fe
 
 
 
d75090c
 
eab216c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate, PromptTemplate
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_community.chat_models import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
from dotenv import load_dotenv
from huggingface_hub import login
import os

# Load environment variables and authenticate
load_dotenv()
login(token=os.environ.get("HUGGING_FACE_API_KEY", ""))
os.environ['CURL_CA_BUNDLE'] = ''

class Bot:
    def __init__(self):
        # Verified, stable models
        self.openai_models = ["gpt-4o", "gpt-4-turbo", "gpt-3.5-turbo"]
        self.anthropic_models = ["claude-3-opus-20240229", "claude-3-sonnet-20240229"]
        self.google_models = ["gemini-pro"]
        self.groq_models = ["llama3-8b-8192", "llama3-70b-8192"]  # Keep only working ones

        # Final model list
        self.models = self.openai_models + self.anthropic_models + self.google_models + self.groq_models

    def call_openai(self, model, temp=0.7, given_prompt="Hi"):
        try:
            llm = ChatOpenAI(model=model, temperature=temp)
            prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful assistant."),
                ("human", "{text}")
            ])
            chain = prompt | llm | StrOutputParser()
            return chain.invoke({"text": given_prompt})
        except Exception as e:
            return f"⚠️ [OpenAI:{model}] {str(e)}"

    def call_anthropic(self, model, temp=0.7, given_prompt="Hi"):
        try:
            llm = ChatAnthropic(model=model, temperature=temp)
            prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful assistant."),
                ("human", "{text}")
            ])
            chain = prompt | llm | StrOutputParser()
            return chain.invoke({"text": given_prompt})
        except Exception as e:
            return f"⚠️ [Anthropic:{model}] {str(e)}"

    def call_google(self, model, temp=0.7, given_prompt="Hi"):
        try:
            gm = ChatGoogleGenerativeAI(model=model, temperature=temp)
            prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful assistant."),
                ("human", "{text}")
            ])
            chain = prompt | gm | StrOutputParser()
            return chain.invoke({"text": given_prompt})
        except Exception as e:
            return f"⚠️ [Google:{model}] {str(e)}"

    def call_groq(self, model, temp=0.7, given_prompt="Hi"):
        try:
            llm = ChatGroq(model=model, temperature=temp)
            prompt = ChatPromptTemplate.from_messages([
                ("system", "You are a helpful assistant."),
                ("human", "{text}")
            ])
            chain = prompt | llm | StrOutputParser()
            return chain.invoke({"text": given_prompt})
        except Exception as e:
            return f"⚠️ [Groq:{model}] {str(e)}"

    def response(self, model, prompt="Hi", temperature=0.7):
        try:
            if model in self.openai_models:
                return self.call_openai(model, temp=temperature, given_prompt=prompt)
            elif model in self.anthropic_models:
                return self.call_anthropic(model, temp=temperature, given_prompt=prompt)
            elif model in self.google_models:
                return self.call_google(model, temp=temperature, given_prompt=prompt)
            elif model in self.groq_models:
                return self.call_groq(model, temp=temperature, given_prompt=prompt)
            else:
                return f"❌ Unsupported model: {model}"
        except Exception as e:
            return f"⚠️ Skipping `{model}` due to error: {str(e)}"