Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,31 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from utils import generate_tutor_output
|
3 |
|
4 |
with gr.Blocks() as demo:
|
5 |
-
gr.Markdown("# 🎓
|
6 |
-
|
7 |
with gr.Row():
|
8 |
with gr.Column(scale=2):
|
9 |
-
# Subject Dropdown
|
10 |
subject = gr.Dropdown(
|
11 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
12 |
label="Subject",
|
13 |
info="Choose the subject of your lesson"
|
14 |
)
|
15 |
-
|
16 |
-
# Difficulty Level Radio
|
17 |
difficulty = gr.Radio(
|
18 |
["Beginner", "Intermediate", "Advanced"],
|
19 |
label="Difficulty Level",
|
20 |
info="Select your proficiency level"
|
21 |
)
|
22 |
-
|
23 |
-
# Student Input Textbox
|
24 |
student_input = gr.Textbox(
|
25 |
placeholder="Type your query here...",
|
26 |
label="Your Input",
|
27 |
info="Enter the topic you want to learn"
|
28 |
)
|
29 |
|
30 |
-
# Model Dropdown - Updated to match models in utils.py
|
31 |
model = gr.Dropdown(
|
32 |
-
["OpenAI", "
|
33 |
label="LLM",
|
34 |
info="Choose the language model"
|
35 |
)
|
@@ -40,28 +36,31 @@ with gr.Blocks() as demo:
|
|
40 |
lesson_output = gr.Markdown(label="Lesson")
|
41 |
question_output = gr.Markdown(label="Comprehension Question")
|
42 |
feedback_output = gr.Markdown(label="Feedback")
|
|
|
43 |
|
44 |
gr.Markdown("""
|
45 |
### How to Use
|
46 |
1. Select a subject from the dropdown.
|
47 |
2. Choose your difficulty level.
|
48 |
3. Enter the topic or question you'd like to explore.
|
49 |
-
4. Click 'Generate Lesson' to receive a personalized lesson, question, and
|
50 |
5. Review the AI-generated content to enhance your learning.
|
51 |
6. Feel free to ask follow-up questions or explore new topics!
|
52 |
""")
|
53 |
-
|
|
|
54 |
def process_output(output):
|
55 |
try:
|
56 |
-
parsed = eval(output)
|
57 |
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
58 |
except:
|
59 |
return "Error parsing output", "No question available", "No feedback available"
|
60 |
-
|
|
|
61 |
submit_button.click(
|
62 |
fn=lambda s, d, i, m: process_output(generate_tutor_output(s, d, i, m)),
|
63 |
inputs=[subject, difficulty, student_input, model],
|
64 |
-
outputs=[lesson_output, question_output, feedback_output]
|
65 |
)
|
66 |
|
67 |
if __name__ == "__main__":
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
from utils import generate_tutor_output
|
5 |
|
6 |
with gr.Blocks() as demo:
|
7 |
+
gr.Markdown("# 🎓 Your AI Tutor by Farhan")
|
8 |
+
|
9 |
with gr.Row():
|
10 |
with gr.Column(scale=2):
|
|
|
11 |
subject = gr.Dropdown(
|
12 |
["Math", "Science", "History", "Literature", "Code", "AI"],
|
13 |
label="Subject",
|
14 |
info="Choose the subject of your lesson"
|
15 |
)
|
|
|
|
|
16 |
difficulty = gr.Radio(
|
17 |
["Beginner", "Intermediate", "Advanced"],
|
18 |
label="Difficulty Level",
|
19 |
info="Select your proficiency level"
|
20 |
)
|
|
|
|
|
21 |
student_input = gr.Textbox(
|
22 |
placeholder="Type your query here...",
|
23 |
label="Your Input",
|
24 |
info="Enter the topic you want to learn"
|
25 |
)
|
26 |
|
|
|
27 |
model = gr.Dropdown(
|
28 |
+
["OpenAI", "LLAMA3 70B", "Mixtral 8x7B"],
|
29 |
label="LLM",
|
30 |
info="Choose the language model"
|
31 |
)
|
|
|
36 |
lesson_output = gr.Markdown(label="Lesson")
|
37 |
question_output = gr.Markdown(label="Comprehension Question")
|
38 |
feedback_output = gr.Markdown(label="Feedback")
|
39 |
+
image_output = gr.Image(label="Visual Answer", elem_id="image-output")
|
40 |
|
41 |
gr.Markdown("""
|
42 |
### How to Use
|
43 |
1. Select a subject from the dropdown.
|
44 |
2. Choose your difficulty level.
|
45 |
3. Enter the topic or question you'd like to explore.
|
46 |
+
4. Click 'Generate Lesson' to receive a personalized lesson, question, feedback, and a visual answer.
|
47 |
5. Review the AI-generated content to enhance your learning.
|
48 |
6. Feel free to ask follow-up questions or explore new topics!
|
49 |
""")
|
50 |
+
|
51 |
+
# Function to process and extract the JSON response
|
52 |
def process_output(output):
|
53 |
try:
|
54 |
+
parsed = eval(output)
|
55 |
return parsed["lesson"], parsed["question"], parsed["feedback"]
|
56 |
except:
|
57 |
return "Error parsing output", "No question available", "No feedback available"
|
58 |
+
|
59 |
+
# Define the interaction between user inputs and generated outputs
|
60 |
submit_button.click(
|
61 |
fn=lambda s, d, i, m: process_output(generate_tutor_output(s, d, i, m)),
|
62 |
inputs=[subject, difficulty, student_input, model],
|
63 |
+
outputs=[lesson_output, question_output, feedback_output, image_output]
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|