Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
import streamlit as st
|
3 |
from gradio_client import Client
|
|
|
4 |
from PIL import Image
|
5 |
import moviepy.editor as mp
|
6 |
from natsort import natsorted
|
7 |
-
from pydantic import BaseModel, Field
|
8 |
-
from typing import List, Dict, Type, Optional, TypedDict
|
9 |
-
from langgraph.graph import StateGraph, START, END
|
10 |
-
from langchain_groq import ChatGroq
|
11 |
-
from langchain_core.messages import SystemMessage
|
12 |
import os
|
13 |
from dotenv import load_dotenv
|
|
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
@@ -18,227 +15,145 @@ load_dotenv()
|
|
18 |
# Constants
|
19 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
21 |
-
IMAGE_GENERATION_SPACE_NAME = "stabilityai/stable-diffusion-3.5-large-turbo"
|
22 |
-
SUPPORTED_FORMATS = ["mp3", "wav", "ogg", "flac", "aac", "m4a"]
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
text: str = Field(description="Actual Segment of text(a scene) from the complete story")
|
27 |
-
image_prompts: List[str] = Field(
|
28 |
-
description="""List of detailed and descriptive image prompts for the segment
|
29 |
-
prompt format: [theme: {atmosphere/mood}] [style: {artistic/photorealistic}] [focus: {main subject}] [details: {specific elements}] [lighting: {day/night/mystic}] [perspective: {close-up/wide-angle}]"
|
30 |
-
Example: "theme: eerie forest | style: cinematic realism | focus: abandoned cabin | details: broken windows, overgrown vines | lighting: moonlit fog | perspective: wide-angle shot"
|
31 |
-
"""
|
32 |
-
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
output: Optional[BaseModel]
|
41 |
-
|
42 |
-
class StructuredOutputExtractor:
|
43 |
-
def __init__(self, response_schema: Type[BaseModel]):
|
44 |
-
self.response_schema = response_schema
|
45 |
-
self.llm = ChatGroq(model="deepseek-r1-distill-llama-70b", api_key=GROQ_API_KEY)
|
46 |
-
self.structured_llm = self.llm.with_structured_output(response_schema)
|
47 |
-
self._build_graph()
|
48 |
-
|
49 |
-
def _build_graph(self):
|
50 |
-
graph_builder = StateGraph(State)
|
51 |
-
graph_builder.add_node("extract", self._extract_structured_info)
|
52 |
-
graph_builder.add_edge(START, "extract")
|
53 |
-
graph_builder.add_edge("extract", END)
|
54 |
-
self.graph = graph_builder.compile()
|
55 |
-
|
56 |
-
def _extract_structured_info(self, state: dict):
|
57 |
-
query = state['messages'][-1].content
|
58 |
-
try:
|
59 |
-
output = self.structured_llm.invoke(query)
|
60 |
-
return {"output": output}
|
61 |
-
except Exception as e:
|
62 |
-
st.error(f"Error during extraction: {e}")
|
63 |
-
return {"output": None}
|
64 |
-
|
65 |
-
def extract(self, query: str) -> Optional[BaseModel]:
|
66 |
-
result = self.graph.invoke({"messages": [SystemMessage(content=query)]})
|
67 |
-
return result.get('output')
|
68 |
|
69 |
# Utility Functions
|
70 |
-
def
|
71 |
-
try:
|
72 |
-
if not text or not isinstance(text, str):
|
73 |
-
return "Invalid input: Text must be a non-empty string."
|
74 |
-
words = text.split()
|
75 |
-
word_count = len(words)
|
76 |
-
total_seconds = (word_count / words_per_minute) * 60
|
77 |
-
hours = int(total_seconds // 3600)
|
78 |
-
minutes = int((total_seconds % 3600) // 60)
|
79 |
-
seconds = int(total_seconds % 60)
|
80 |
-
if hours > 0:
|
81 |
-
return f"Reading time: {hours} hour(s), {minutes} minute(s), and {seconds} second(s)."
|
82 |
-
elif minutes > 0:
|
83 |
-
return f"Reading time: {minutes} minute(s) and {seconds} second(s)."
|
84 |
-
else:
|
85 |
-
return f"Reading time: {seconds} second(s)."
|
86 |
-
except Exception as e:
|
87 |
-
return f"An error occurred: {e}"
|
88 |
-
|
89 |
-
def get_scenes(text_script: str):
|
90 |
-
read_time = calculate_read_time(text_script)
|
91 |
prompt = f"""
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
"""
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
)
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
def generate_image(prompt, path='
|
126 |
try:
|
127 |
-
client = Client(
|
128 |
result = client.predict(
|
129 |
-
prompt=prompt,
|
130 |
-
width=
|
131 |
-
height=
|
132 |
-
api_name="/
|
133 |
)
|
134 |
image = Image.open(result)
|
135 |
image.save(path)
|
136 |
-
return
|
137 |
except Exception as e:
|
138 |
-
st.error(f"Error
|
139 |
-
return
|
140 |
-
|
141 |
-
def generate_video_assets(scenes: Dict, language: str, speaker: str, base_path: str = "media") -> str:
|
142 |
-
try:
|
143 |
-
if not os.path.exists(base_path):
|
144 |
-
os.makedirs(base_path)
|
145 |
-
scenes_list = scenes.get("scenes", [])
|
146 |
-
video_folder = os.path.join(base_path, f"video_{len(os.listdir(base_path)) + 1}")
|
147 |
-
os.makedirs(video_folder, exist_ok=True)
|
148 |
-
images_folder = os.path.join(video_folder, "images")
|
149 |
-
audio_folder = os.path.join(video_folder, "audio")
|
150 |
-
os.makedirs(images_folder, exist_ok=True)
|
151 |
-
os.makedirs(audio_folder, exist_ok=True)
|
152 |
-
|
153 |
-
for scene_count, scene in enumerate(scenes_list):
|
154 |
-
text = scene.get("text", "")
|
155 |
-
image_prompts = scene.get("image_prompts", [])
|
156 |
-
audio_path = os.path.join(audio_folder, f"scene_{scene_count + 1}.mp3")
|
157 |
-
audio_result = generate_audio(text, language, speaker, path=audio_path)
|
158 |
-
if "error" in audio_result:
|
159 |
-
continue
|
160 |
-
scene_images_folder = os.path.join(images_folder, f"scene_{scene_count + 1}")
|
161 |
-
os.makedirs(scene_images_folder, exist_ok=True)
|
162 |
-
for count, prompt in enumerate(image_prompts):
|
163 |
-
image_path = os.path.join(scene_images_folder, f"scene_{scene_count + 1}_image_{count + 1}.png")
|
164 |
-
generate_image(prompt=prompt, path=image_path)
|
165 |
-
|
166 |
-
return video_folder
|
167 |
-
except Exception as e:
|
168 |
-
st.error(f"Error during video asset generation: {e}")
|
169 |
-
return ""
|
170 |
|
171 |
-
def generate_video(
|
172 |
try:
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
]
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
audio_clip = mp.AudioFileClip(audio_path)
|
194 |
-
duration_per_image = audio_clip.duration / len(image_files)
|
195 |
-
image_clips = [mp.ImageClip(img).set_duration(duration_per_image) for img in image_files]
|
196 |
-
scene_video = mp.concatenate_videoclips(image_clips, method="compose").set_audio(audio_clip)
|
197 |
-
final_clips.append(scene_video)
|
198 |
-
if not final_clips:
|
199 |
-
st.error("No valid scenes processed.")
|
200 |
-
return None
|
201 |
-
final_video = mp.concatenate_videoclips(final_clips, method="compose")
|
202 |
-
output_path = os.path.join(video_folder, output_filename)
|
203 |
-
final_video.write_videofile(output_path, fps=24, codec='libx264')
|
204 |
-
return output_path
|
205 |
except Exception as e:
|
206 |
-
st.error(f"Error
|
207 |
return None
|
208 |
|
209 |
# Streamlit App
|
210 |
def main():
|
211 |
-
st.markdown("<h1 style='text-align: center;'>
|
212 |
-
st.markdown("<p style='text-align: center;'>
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
else:
|
228 |
-
video_assets_folder = generate_video_assets(scenes, language, selected_speaker)
|
229 |
-
if video_assets_folder:
|
230 |
-
generated_video_path = generate_video(video_assets_folder)
|
231 |
-
if generated_video_path:
|
232 |
-
st.success("Video generated successfully!")
|
233 |
-
st.video(generated_video_path)
|
234 |
else:
|
235 |
-
st.warning("Please
|
236 |
-
|
237 |
-
st.
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
|
243 |
if __name__ == "__main__":
|
244 |
main()
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
import streamlit as st
|
3 |
from gradio_client import Client
|
4 |
+
from groq import Groq
|
5 |
from PIL import Image
|
6 |
import moviepy.editor as mp
|
7 |
from natsort import natsorted
|
|
|
|
|
|
|
|
|
|
|
8 |
import os
|
9 |
from dotenv import load_dotenv
|
10 |
+
import json
|
11 |
|
12 |
# Load environment variables
|
13 |
load_dotenv()
|
|
|
15 |
# Constants
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
18 |
+
IMAGE_GENERATION_SPACE_NAME = "stabilityai/stable-diffusion-3.5-large-turbo"
|
|
|
19 |
|
20 |
+
# Initialize Groq client
|
21 |
+
groq_client = Groq(api_key=GROQ_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# LLM Models (free options)
|
24 |
+
LLM_MODELS = {
|
25 |
+
"Mixtral 8x7B (Groq)": "mixtral-8x7b-32768",
|
26 |
+
"Mistral 7B (HF)": "mistralai/Mixtral-7B-Instruct-v0.1",
|
27 |
+
"LLaMA 13B (HF)": "meta-llama/Llama-13b-hf" # Note: May require approval; replace if needed
|
28 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Utility Functions
|
31 |
+
def generate_tutor_output(subject, difficulty, student_input, model):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
prompt = f"""
|
33 |
+
You are an expert tutor in {subject} at the {difficulty} level.
|
34 |
+
The student has provided the following input: "{student_input}"
|
35 |
+
|
36 |
+
Please generate:
|
37 |
+
1. A brief, engaging lesson on the topic (2-3 paragraphs)
|
38 |
+
2. A thought-provoking question to check understanding
|
39 |
+
3. Constructive feedback on the student's input
|
40 |
+
|
41 |
+
Format your response as a JSON object with keys: "lesson", "question", "feedback"
|
42 |
"""
|
43 |
+
|
44 |
+
if model.startswith("mixtral"): # Groq model
|
45 |
+
completion = groq_client.chat.completions.create(
|
46 |
+
messages=[{
|
47 |
+
"role": "system",
|
48 |
+
"content": f"You are the world's best AI tutor for {subject}, renowned for clear, engaging explanations."
|
49 |
+
}, {
|
50 |
+
"role": "user",
|
51 |
+
"content": prompt
|
52 |
+
}],
|
53 |
+
model=model,
|
54 |
+
max_tokens=1000
|
55 |
)
|
56 |
+
return json.loads(completion.choices[0].message.content)
|
57 |
+
else: # Hugging Face models
|
58 |
+
try:
|
59 |
+
client = Client("https://api-inference.huggingface.co/models/" + model, hf_token=HF_TOKEN)
|
60 |
+
response = client.predict(prompt, api_name="/generate")
|
61 |
+
return json.loads(response)
|
62 |
+
except:
|
63 |
+
st.warning(f"HF model {model} failed, falling back to Mixtral.")
|
64 |
+
return generate_tutor_output(subject, difficulty, student_input, "mixtral-8x7b-32768")
|
65 |
+
|
66 |
+
def generate_image(prompt, path='temp_image.png'):
|
67 |
try:
|
68 |
+
client = Client(IMAGE_GENERATION_SPACE_NAME, hf_token=HF_TOKEN)
|
69 |
result = client.predict(
|
70 |
+
prompt=prompt,
|
71 |
+
width=512, # Reduced for speed
|
72 |
+
height=512,
|
73 |
+
api_name="/predict" # Correct endpoint
|
74 |
)
|
75 |
image = Image.open(result)
|
76 |
image.save(path)
|
77 |
+
return path
|
78 |
except Exception as e:
|
79 |
+
st.error(f"Error generating image: {e}")
|
80 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
def generate_video(images, audio_text, language, speaker, path='temp_video.mp4'):
|
83 |
try:
|
84 |
+
audio_client = Client("habib926653/Multilingual-TTS")
|
85 |
+
audio_result = audio_client.predict(
|
86 |
+
text=audio_text,
|
87 |
+
language_code=language,
|
88 |
+
speaker=speaker,
|
89 |
+
api_name="/text_to_speech_edge"
|
90 |
+
)
|
91 |
+
audio_file = audio_result[1]
|
92 |
+
with open(audio_file, 'rb') as f:
|
93 |
+
audio_bytes = f.read()
|
94 |
+
audio_path = "temp_audio.mp3"
|
95 |
+
with open(audio_path, 'wb') as f:
|
96 |
+
f.write(audio_bytes)
|
97 |
+
|
98 |
+
audio_clip = mp.AudioFileClip(audio_path)
|
99 |
+
duration_per_image = audio_clip.duration / len(images)
|
100 |
+
image_clips = [mp.ImageClip(img).set_duration(duration_per_image) for img in images if img]
|
101 |
+
video = mp.concatenate_videoclips(image_clips, method="compose").set_audio(audio_clip)
|
102 |
+
video.write_videofile(path, fps=24, codec='libx264')
|
103 |
+
return path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
except Exception as e:
|
105 |
+
st.error(f"Error generating video: {e}")
|
106 |
return None
|
107 |
|
108 |
# Streamlit App
|
109 |
def main():
|
110 |
+
st.markdown("<h1 style='text-align: center;'>EduAI: Your Interactive Tutor</h1>", unsafe_allow_html=True)
|
111 |
+
st.markdown("<p style='text-align: center;'>Learn, Ask, Visualize! ❤️</p>", unsafe_allow_html=True)
|
112 |
+
|
113 |
+
subject = st.selectbox("Choose Subject:", ["Math", "Science", "History", "Literature", "Code", "AI"])
|
114 |
+
difficulty = st.selectbox("Difficulty Level:", ["Beginner", "Intermediate", "Advanced"])
|
115 |
+
model = st.selectbox("Choose LLM Model:", list(LLM_MODELS.keys()))
|
116 |
+
student_input = st.text_area("Your Question/Input (max 1500 chars):", max_chars=1500)
|
117 |
+
|
118 |
+
if 'tutor_response' not in st.session_state:
|
119 |
+
st.session_state.tutor_response = None
|
120 |
+
|
121 |
+
if st.button("Generate Answer & Question"):
|
122 |
+
if student_input:
|
123 |
+
with st.spinner("Generating your lesson..."):
|
124 |
+
response = generate_tutor_output(subject, difficulty, student_input, LLM_MODELS[model])
|
125 |
+
st.session_state.tutor_response = response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
+
st.warning("Please provide an input!")
|
128 |
+
|
129 |
+
if st.session_state.tutor_response:
|
130 |
+
st.markdown("### Lesson")
|
131 |
+
st.write(st.session_state.tutor_response["lesson"])
|
132 |
+
st.markdown("### Comprehension Question")
|
133 |
+
st.write(st.session_state.tutor_response["question"])
|
134 |
+
st.markdown("### Feedback")
|
135 |
+
st.write(st.session_state.tutor_response["feedback"])
|
136 |
+
|
137 |
+
col1, col2 = st.columns(2)
|
138 |
+
with col1:
|
139 |
+
if st.button("Generate Image"):
|
140 |
+
with st.spinner("Creating image..."):
|
141 |
+
image_path = generate_image(st.session_state.tutor_response["lesson"])
|
142 |
+
if image_path:
|
143 |
+
st.image(image_path, caption="Visual of your lesson")
|
144 |
+
with col2:
|
145 |
+
if st.button("Generate Video"):
|
146 |
+
with st.spinner("Creating video..."):
|
147 |
+
audio_client = Client("habib926653/Multilingual-TTS")
|
148 |
+
speakers_response = audio_client.predict(language="English", api_name="/get_speakers")
|
149 |
+
speaker = speakers_response["choices"][0][0]
|
150 |
+
images = [generate_image(st.session_state.tutor_response["lesson"])]
|
151 |
+
video_path = generate_video(images, st.session_state.tutor_response["lesson"], "English", speaker)
|
152 |
+
if video_path:
|
153 |
+
st.video(video_path)
|
154 |
+
|
155 |
+
st.markdown("---")
|
156 |
+
st.markdown("<p style='text-align: center;'>Built for learning, powered by AI!</p>", unsafe_allow_html=True)
|
157 |
|
158 |
if __name__ == "__main__":
|
159 |
main()
|