from tensorflow.keras.models import load_model import numpy as np import cv2 model = load_model('sentimentality.h5') def sentiment(text): result = model(text)[0] label = result['label'] score = round(result['score'], 3) return f"{label} ({score})" input_text = gr.inputs.Textbox(label="Enter text here to be classified:") label = gr.outputs.Label(num_top_classes=2) gr.Interface(fn=predict_from_img, inputs=image, outputs=label,title = 'Sentiment-Analysis').launch()