import gradio as gr import tensorflow as tf import numpy as np # Load the pre-trained model model = tf.keras.models.load_model('sentimentality.h5') # Define a function to preprocess the text input def preprocess(text): tokenizer = tf.keras.preprocessing.text.Tokenizer() tokenizer.fit_on_texts([text]) text = tokenizer.texts_to_sequences([text]) text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post') return text def sentiment_analysis(text): scores = model.predict(text) return scores iface = gr.Interface( fn=sentiment_analysis, inputs=gr.Textbox(placeholder="Enter a positive or negative sentence here..."), outputs="label", interpretation="default", examples=[["This is wonderful!"]]) iface.launch()