import gradio as gr import tensorflow as tf # Load the saved model model = tf.keras.models.load_model("sentimentality.h5") def predict_sentiment(text): """ This function takes a text input and returns the predicted sentiment using a saved model. Parameters: text (str): The input text to be analyzed Returns: str: The predicted sentiment of the input text (either "positive" or "negative") """ # Preprocess the input text text = preprocess_text(text) # Make the prediction using the loaded model prediction = model.predict([text])[0][0] # Return the predicted sentiment if prediction > 0.5: return "positive" else: return "negative" # Create the Gradio interface iface = gr.Interface(fn=predict_sentiment, inputs="text", outputs="text") # Run the interface iface.launch()