Commit
·
72cc2a3
1
Parent(s):
078e4df
(old code) X (new code)
Browse files
app.py
CHANGED
@@ -4,6 +4,21 @@ import tensorflow as tf
|
|
4 |
# Load the saved model
|
5 |
model = tf.keras.models.load_model("sentimentality.h5")
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def predict_sentiment(text):
|
8 |
# preprocess input text
|
9 |
processed_text = preprocess(text)
|
|
|
4 |
# Load the saved model
|
5 |
model = tf.keras.models.load_model("sentimentality.h5")
|
6 |
|
7 |
+
def preprocess(text):
|
8 |
+
# Tokenize the text into a list of words
|
9 |
+
words = text.strip().lower().split()
|
10 |
+
# Load the vocabulary
|
11 |
+
with open('vocabulary.txt', 'r') as f:
|
12 |
+
vocab = f.read().splitlines()
|
13 |
+
# Convert the words to indices in the vocabulary
|
14 |
+
word_indices = [vocab.index(word) if word in vocab else 0 for word in words]
|
15 |
+
# Pad the sequence with zeros to a fixed length of 500
|
16 |
+
padded_indices = np.zeros(500, dtype=np.int32)
|
17 |
+
padded_indices[:len(word_indices)] = word_indices
|
18 |
+
# Convert the sequence to a tensor
|
19 |
+
tensor = np.expand_dims(padded_indices, axis=0)
|
20 |
+
return tensor
|
21 |
+
|
22 |
def predict_sentiment(text):
|
23 |
# preprocess input text
|
24 |
processed_text = preprocess(text)
|