Commit
·
52fe9f8
1
Parent(s):
8a89a2a
used another function
Browse files
app.py
CHANGED
@@ -3,14 +3,34 @@ import numpy as np
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
|
|
|
6 |
model = load_model('sentimentality.h5')
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def sentiment(text):
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
return f"{label} ({score})"
|
13 |
|
|
|
14 |
input_text = gr.inputs.Textbox(label="Enter text here to be classified:")
|
15 |
label = gr.outputs.Label(num_top_classes=2)
|
16 |
gr.Interface(fn=sentiment, inputs=input_text, outputs=label,title = 'Sentiment-Analysis').launch()
|
|
|
3 |
import cv2
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Load the model
|
7 |
model = load_model('sentimentality.h5')
|
8 |
|
9 |
+
# Function to preprocess the input text
|
10 |
+
def preprocess(text):
|
11 |
+
# Tokenize the text into a list of words
|
12 |
+
words = text.strip().lower().split()
|
13 |
+
# Load the vocabulary
|
14 |
+
with open('vocabulary.txt', 'r') as f:
|
15 |
+
vocab = f.read().splitlines()
|
16 |
+
# Convert the words to indices in the vocabulary
|
17 |
+
word_indices = [vocab.index(word) if word in vocab else 0 for word in words]
|
18 |
+
# Pad the sequence with zeros to a fixed length of 500
|
19 |
+
padded_indices = np.zeros(500, dtype=np.int32)
|
20 |
+
padded_indices[:len(word_indices)] = word_indices
|
21 |
+
# Convert the sequence to a tensor
|
22 |
+
tensor = np.expand_dims(padded_indices, axis=0)
|
23 |
+
return tensor
|
24 |
+
|
25 |
+
# Function to make predictions using the loaded model
|
26 |
def sentiment(text):
|
27 |
+
input_tensor = preprocess(text)
|
28 |
+
result = model.predict(input_tensor)[0]
|
29 |
+
label = 'positive' if result > 0.5 else 'negative'
|
30 |
+
score = round(float(result), 3)
|
31 |
return f"{label} ({score})"
|
32 |
|
33 |
+
# Create a Gradio interface
|
34 |
input_text = gr.inputs.Textbox(label="Enter text here to be classified:")
|
35 |
label = gr.outputs.Label(num_top_classes=2)
|
36 |
gr.Interface(fn=sentiment, inputs=input_text, outputs=label,title = 'Sentiment-Analysis').launch()
|