Sambhavnoobcoder commited on
Commit
322922b
·
1 Parent(s): ef82efc

added anther model

Browse files
Files changed (1) hide show
  1. app.py +13 -29
app.py CHANGED
@@ -1,35 +1,19 @@
1
  import gradio as gr
2
- import torch
3
- import tensorflow as tf
4
- from transformers import AutoTokenizer
5
- from model import SentimentClassifier
6
 
7
- model_state_dict = tf.keras.load_model('sentimentality.h5')
8
- model = SentimentClassifier(2)
9
- model.load_state_dict(model_state_dict)
10
- model.eval()
11
 
12
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
 
 
 
 
 
13
 
 
 
14
 
15
- def preprocess(text):
16
- inputs = tokenizer(text, padding='max_length',
17
- truncation=True, max_length=512, return_tensors='pt')
18
- return inputs
19
- # Define a function to use the model to make predictions
20
- def predict(review):
21
- inputs = preprocess(review)
22
- with torch.no_grad():
23
- outputs = model(inputs['input_ids'], inputs['attention_mask'])
24
- predicted_class = torch.argmax(outputs[0]).item()
25
- if(predicted_class==0):
26
- return "It was a negative review"
27
- return "It was a positive review"
28
 
29
- # Create a Gradio interface
30
- input_text = gr.inputs.Textbox(label="Input Text")
31
- output_text = gr.outputs.Textbox(label="Output Text")
32
- interface = gr.Interface(fn=predict, inputs=input_text, outputs=output_text)
33
-
34
- # Run the interface
35
- interface.launch()
 
1
  import gradio as gr
2
+ from fastai.vision.all import *
 
 
 
3
 
4
+ # Load the model
5
+ learn = load_learner('sentimentality.h5')
 
 
6
 
7
+ # Prediction function
8
+ def make_prediction(user_sentence):
9
+
10
+ prediction = learn.predict(user_sentence)
11
+ dict = {'1': 'Negative', '2': 'Neutral', '3': 'Positive'}
12
+ return dict[prediction[0]]
13
 
14
+ title = "Sentiment Analysis MyAnimeList Reviews with fastai"
15
+ description = "<p style='text-align: center'>Identifier si un commentaire dans MyAnimeList est positif, neutre ou négatif.<br/> Permet de connaître rapidement le sentiment globale que dégage un avis sur le site.</p>"
16
 
17
+ app = gr.Interface(fn=make_prediction, title=title, description=description, inputs=gr.TextArea(), outputs='text')
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ app.launch()