Sambhavnoobcoder commited on
Commit
1f2ab71
·
1 Parent(s): 19346d3

updated and restructured app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -34
app.py CHANGED
@@ -1,37 +1,15 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- from tensorflow import keras
4
 
5
- # Load the sentiment analysis model
6
- model = keras.models.load_model("sentimentality.h5")
7
 
8
- # Load the tokenizer and max length used during training
9
- tokenizer = keras.preprocessing.text.tokenizer_from_json(open("tokenizer.json").read())
10
- max_len = 100
 
 
11
 
12
- def predict_sentiment(text):
13
- # Preprocess the text
14
- text = [text]
15
- text = tf.keras.preprocessing.sequence.pad_sequences(tokenizer.texts_to_sequences(text), maxlen=max_len)
16
-
17
- # Make a prediction
18
- prediction = model.predict(text)[0][0]
19
-
20
- # Return the probabilities of each sentiment
21
- positive_prob = round(prediction * 100, 2)
22
- negative_prob = round((1 - prediction) * 100, 2)
23
- neutral_prob = 100 - positive_prob - negative_prob
24
-
25
- return f"Positive: {positive_prob}%\nNegative: {negative_prob}%\nNeutral: {neutral_prob}%"
26
-
27
- # Define the interface of the Gradio app
28
- iface = gr.Interface(
29
- fn=predict_sentiment,
30
- inputs=gr.inputs.Textbox(label="Enter text here:"),
31
- outputs=gr.outputs.Textbox(label="Sentiment probabilities:"),
32
- title="Sentiment Analysis",
33
- description="Enter some text and get the probabilities of the sentiment.",
34
- )
35
-
36
- # Run the Gradio app
37
- iface.launch()
 
1
+ from tensorflow.keras.models import load_model
2
+ import numpy as np
3
+ import cv2
4
 
5
+ model = load_model('sentimentality.h5')
 
6
 
7
+ def sentiment(text):
8
+ result = model(text)[0]
9
+ label = result['label']
10
+ score = round(result['score'], 3)
11
+ return f"{label} ({score})"
12
 
13
+ input_text = gr.inputs.Textbox(label="Enter text here to be classified:")
14
+ label = gr.outputs.Label(num_top_classes=2)
15
+ gr.Interface(fn=predict_from_img, inputs=image, outputs=label,title = 'Sentiment-Analysis').launch()