Sambhavnoobcoder's picture
was getting negative irrespective of input
b976ff0
raw
history blame
1.14 kB
import gradio as gr
import torch
import tensorflow as tf
from transformers import AutoTokenizer
from model import SentimentClassifier
model_state_dict = tf.keras.load_model('sentimentality.h5')
model = SentimentClassifier(2)
model.load_state_dict(model_state_dict)
model.eval()
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
def preprocess(text):
inputs = tokenizer(text, padding='max_length',
truncation=True, max_length=512, return_tensors='pt')
return inputs
# Define a function to use the model to make predictions
def predict(review):
inputs = preprocess(review)
with torch.no_grad():
outputs = model(inputs['input_ids'], inputs['attention_mask'])
predicted_class = torch.argmax(outputs[0]).item()
if(predicted_class==0):
return "It was a negative review"
return "It was a positive review"
# Create a Gradio interface
input_text = gr.inputs.Textbox(label="Input Text")
output_text = gr.outputs.Textbox(label="Output Text")
interface = gr.Interface(fn=predict, inputs=input_text, outputs=output_text)
# Run the interface
interface.launch()