|
import gradio as gr |
|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras.datasets import imdb |
|
|
|
word_to_index = imdb.get_word_index() |
|
|
|
|
|
loaded_model = tf.keras.models.load_model('sentimentality.h5') |
|
|
|
|
|
def predict_sentiment(user_input, number_of_words, words_per_view): |
|
|
|
words = user_input.split() |
|
encoded_word = np.zeros(words_per_view).astype(int) |
|
encoded_word[words_per_view - len(words) - 1] = 1 |
|
for i, word in enumerate(words): |
|
index = words_per_view - len(words) + i |
|
encoded_word[index] = word_to_index.get(word, 0) + 3 |
|
encoded_word = np.expand_dims(encoded_word, axis=0) |
|
|
|
|
|
prediction = loaded_model.predict(encoded_word)[0][0] |
|
|
|
|
|
if prediction > 0.5: |
|
return "Positive" |
|
else: |
|
return "Negative" |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_sentiment, |
|
inputs=["textbox", gr.inputs.NumberRange(minimum=1, maximum=10000, default=3000, label="Number of words"), gr.inputs.NumberRange(minimum=1, maximum=100, default=30, label="Words per view")], |
|
outputs="text", |
|
title="Sentiment Analysis", |
|
description="Enter a text and get the sentiment prediction" |
|
) |
|
|
|
|
|
iface.launch() |
|
|