Sambhavnoobcoder's picture
changed number of words view
2f687cc
raw
history blame
1.15 kB
from tensorflow import keras
import tensorflow as tf
from tensorflow.keras.datasets import imdb
import numpy as np
import gradio as gr
number_of_words = 3000
words_per_view = 30
loaded_model = tf.keras.models.load_model('sentimentality.h5')
word_to_index = imdb.get_word_index()
def get_predict(userInputString, model):
words = userInputString.split()
#print(len(words))
encoded_word = np.zeros(words_per_view).astype(int)
encoded_word[words_per_view -len(words) - 1] = 1
for i, word in enumerate(words):
index = words_per_view - len(words) + i
encoded_word[index] = word_to_index.get(word, 0) + 3
encoded_word = np.expand_dims(encoded_word, axis=0)
prediction = model.predict(encoded_word)
return prediction
def analyze_sentiment(userInputString):
result = get_predict(userInputString, loaded_model)[0][0]
if result > 0.5:
answer = 'positive review'
else: answer = 'negative review'
return answer
UserInputPage = gr.Interface(
fn=analyze_sentiment,
inputs = ["text"],
outputs=["text"]
)
tabbed_Interface = gr.TabbedInterface([UserInputPage], ["Check user input"])
tabbed_Interface.launch()