|
from tensorflow import keras |
|
import tensorflow as tf |
|
from tensorflow.keras.datasets import imdb |
|
import numpy as np |
|
import gradio as gr |
|
|
|
number_of_words = 3000 |
|
words_per_view = 30 |
|
|
|
loaded_model = tf.keras.models.load_model('sentimentality.h5') |
|
word_to_index = imdb.get_word_index() |
|
|
|
def get_predict(userInputString, model): |
|
words = userInputString.split() |
|
|
|
encoded_word = np.zeros(words_per_view).astype(int) |
|
encoded_word[words_per_view -len(words) - 1] = 1 |
|
for i, word in enumerate(words): |
|
index = words_per_view - len(words) + i |
|
encoded_word[index] = word_to_index.get(word, 0) + 3 |
|
encoded_word = np.expand_dims(encoded_word, axis=0) |
|
prediction = model.predict(encoded_word) |
|
return prediction |
|
|
|
def analyze_sentiment(userInputString): |
|
result = get_predict(userInputString, loaded_model)[0][0] |
|
if result > 0.5: |
|
answer = 'positive review' |
|
else: answer = 'negative review' |
|
return answer |
|
UserInputPage = gr.Interface( |
|
fn=analyze_sentiment, |
|
inputs = ["text"], |
|
outputs=["text"] |
|
) |
|
tabbed_Interface = gr.TabbedInterface([UserInputPage], ["Check user input"]) |
|
tabbed_Interface.launch() |
|
|