File size: 599 Bytes
2f9f9d9
625452f
b976ff0
4386646
 
b976ff0
4386646
078e4df
 
4386646
078e4df
 
 
4386646
078e4df
60ae5e6
078e4df
 
 
60ae5e6
4386646
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
import tensorflow as tf

# Load the saved model
model = tf.keras.models.load_model("sentimentality.h5")

def predict_sentiment(text):
    # preprocess input text
    processed_text = preprocess(text)
    
    # predict sentiment
    prediction = model.predict([processed_text])[0][0]
    sentiment = 'positive' if prediction >= 0.5 else 'negative'
    
    return sentiment

iface = gr.Interface(fn=predict_sentiment, 
                     inputs=gr.inputs.Textbox(label='Input Text'), 
                     outputs=gr.outputs.Label(label='Sentiment Prediction'))

iface.launch()