{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "742dd25e", "metadata": { "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19", "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5", "execution": { "iopub.execute_input": "2025-04-09T14:57:34.588701Z", "iopub.status.busy": "2025-04-09T14:57:34.588348Z", "iopub.status.idle": "2025-04-09T14:57:36.465959Z", "shell.execute_reply": "2025-04-09T14:57:36.464971Z" }, "papermill": { "duration": 1.884778, "end_time": "2025-04-09T14:57:36.467568", "exception": false, "start_time": "2025-04-09T14:57:34.582790", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "import os\n", "import urllib.request\n", "import sys\n", "\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "code", "execution_count": 2, "id": "6376949e", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:57:36.477658Z", "iopub.status.busy": "2025-04-09T14:57:36.477313Z", "iopub.status.idle": "2025-04-09T14:57:44.372695Z", "shell.execute_reply": "2025-04-09T14:57:44.371993Z" }, "papermill": { "duration": 7.901685, "end_time": "2025-04-09T14:57:44.374160", "exception": false, "start_time": "2025-04-09T14:57:36.472475", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "from torch.utils.data import Dataset, DataLoader\n", "import torch.nn.functional as f\n", "import torch.optim as optim\n", "\n", "import torchvision\n", "from torchvision.transforms import v2\n", "from torchvision import models\n", "from torchvision.models import resnet50, ResNet50_Weights\n", "import torch.optim.lr_scheduler as lr_scheduler\n", "\n", "import random\n", "from PIL import Image\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "id": "c2c2efd2", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:57:44.384169Z", "iopub.status.busy": "2025-04-09T14:57:44.383727Z", "iopub.status.idle": "2025-04-09T14:57:44.850886Z", "shell.execute_reply": "2025-04-09T14:57:44.849673Z" }, "papermill": { "duration": 0.474073, "end_time": "2025-04-09T14:57:44.852622", "exception": false, "start_time": "2025-04-09T14:57:44.378549", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "df = pd.read_csv('/kaggle/input/fakenews-fakedit/Dataset/df_balanced_resized.csv')" ] }, { "cell_type": "code", "execution_count": 4, "id": "cd73260e", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:57:44.862381Z", "iopub.status.busy": "2025-04-09T14:57:44.862092Z", "iopub.status.idle": "2025-04-09T14:57:44.892519Z", "shell.execute_reply": "2025-04-09T14:57:44.891636Z" }, "papermill": { "duration": 0.036914, "end_time": "2025-04-09T14:57:44.894122", "exception": false, "start_time": "2025-04-09T14:57:44.857208", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
authorclean_titlecreated_utcdomainhasImageidimage_urllinked_submission_idnum_commentsscoresubredditupvote_ratio6_way_labelbinary_label
0BruxellesBlondesooooo satisfying1.537968e+09i.redd.itTrue9j2gd1https://preview.redd.it/bjlftqsj3lo11.jpg?widt...NaN3.015mildlyinteresting0.7500
1korkowthe chips fell out of this chocolate chip cookie1.384738e+09i.imgur.comTrue1qv2m9https://external-preview.redd.it/ESPM-tTuK3wer...NaN4.08misleadingthumbnails0.5921
2kyletheheromanhas anyone seen a square cloud before1.551516e+09i.redd.itTrueawfsgwhttps://preview.redd.it/trqkt1rx4oj21.jpg?widt...NaN6.04mildlyinteresting0.6000
3FledPotatoit almost seems to smile back1.522871e+09i.redd.itTrue89ssvshttps://preview.redd.it/yf1j0rvq4yp01.jpg?widt...NaN9.0212pareidolia0.9821
4allhundredyearsthis tape deck has seen some shit1.426363e+09imgur.comTrue2z1thahttps://external-preview.redd.it/QFHuRDeu_v1cm...NaN2.06pareidolia0.8821
5spyder_19saw an interesting sign at the store so i got it1.564682e+09i.redd.itTrueckrv3khttps://preview.redd.it/ketwpycjmvd31.jpg?widt...NaN2.032mildlyinteresting0.8700
6Not3Shabbyinherent paradox scrabeck1.489213e+09imgur.comTrue5yrdcshttps://external-preview.redd.it/g3nNRMvtW8FCT...NaN0.04fakealbumcovers0.8311
7mikewallgop senate candidate kelli ward complained mcc...1.535296e+09newsweek.comTrue9ag51lhttps://external-preview.redd.it/3c79PddPA_og2...NaN15.0243nottheonion0.9500
8worldnews_SSchristians fleeing iraqs mosul region to provi...1.458731e+09engadget.comTrue4bm0cshttps://external-preview.redd.it/xNKcWQsoGpWr3...NaN20.010subredditsimulator0.9231
9todayilearned_SStil pegi europes video game in only to turn to...1.486354e+09nytimes.comTrue5sc05yhttps://external-preview.redd.it/PL4PyhChdGdhF...NaN61.05subredditsimulator0.8631
\n", "
" ], "text/plain": [ " author clean_title \\\n", "0 BruxellesBlonde sooooo satisfying \n", "1 korkow the chips fell out of this chocolate chip cookie \n", "2 kyletheheroman has anyone seen a square cloud before \n", "3 FledPotato it almost seems to smile back \n", "4 allhundredyears this tape deck has seen some shit \n", "5 spyder_19 saw an interesting sign at the store so i got it \n", "6 Not3Shabby inherent paradox scrabeck \n", "7 mikewall gop senate candidate kelli ward complained mcc... \n", "8 worldnews_SS christians fleeing iraqs mosul region to provi... \n", "9 todayilearned_SS til pegi europes video game in only to turn to... \n", "\n", " created_utc domain hasImage id \\\n", "0 1.537968e+09 i.redd.it True 9j2gd1 \n", "1 1.384738e+09 i.imgur.com True 1qv2m9 \n", "2 1.551516e+09 i.redd.it True awfsgw \n", "3 1.522871e+09 i.redd.it True 89ssvs \n", "4 1.426363e+09 imgur.com True 2z1tha \n", "5 1.564682e+09 i.redd.it True ckrv3k \n", "6 1.489213e+09 imgur.com True 5yrdcs \n", "7 1.535296e+09 newsweek.com True 9ag51l \n", "8 1.458731e+09 engadget.com True 4bm0cs \n", "9 1.486354e+09 nytimes.com True 5sc05y \n", "\n", " image_url linked_submission_id \\\n", "0 https://preview.redd.it/bjlftqsj3lo11.jpg?widt... NaN \n", "1 https://external-preview.redd.it/ESPM-tTuK3wer... NaN \n", "2 https://preview.redd.it/trqkt1rx4oj21.jpg?widt... NaN \n", "3 https://preview.redd.it/yf1j0rvq4yp01.jpg?widt... NaN \n", "4 https://external-preview.redd.it/QFHuRDeu_v1cm... NaN \n", "5 https://preview.redd.it/ketwpycjmvd31.jpg?widt... NaN \n", "6 https://external-preview.redd.it/g3nNRMvtW8FCT... NaN \n", "7 https://external-preview.redd.it/3c79PddPA_og2... NaN \n", "8 https://external-preview.redd.it/xNKcWQsoGpWr3... NaN \n", "9 https://external-preview.redd.it/PL4PyhChdGdhF... NaN \n", "\n", " num_comments score subreddit upvote_ratio 6_way_label \\\n", "0 3.0 15 mildlyinteresting 0.75 0 \n", "1 4.0 8 misleadingthumbnails 0.59 2 \n", "2 6.0 4 mildlyinteresting 0.60 0 \n", "3 9.0 212 pareidolia 0.98 2 \n", "4 2.0 6 pareidolia 0.88 2 \n", "5 2.0 32 mildlyinteresting 0.87 0 \n", "6 0.0 4 fakealbumcovers 0.83 1 \n", "7 15.0 243 nottheonion 0.95 0 \n", "8 20.0 10 subredditsimulator 0.92 3 \n", "9 61.0 5 subredditsimulator 0.86 3 \n", "\n", " binary_label \n", "0 0 \n", "1 1 \n", "2 0 \n", "3 1 \n", "4 1 \n", "5 0 \n", "6 1 \n", "7 0 \n", "8 1 \n", "9 1 " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head(10)" ] }, { "cell_type": "code", "execution_count": 5, "id": "722e2299", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:57:44.905475Z", "iopub.status.busy": "2025-04-09T14:57:44.905209Z", "iopub.status.idle": "2025-04-09T14:57:58.592716Z", "shell.execute_reply": "2025-04-09T14:57:58.591624Z" }, "papermill": { "duration": 13.695117, "end_time": "2025-04-09T14:57:58.594460", "exception": false, "start_time": "2025-04-09T14:57:44.899343", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "%%capture\n", "\n", "! pip install bert-serving-server\n", "! pip install bert-serving-client\n", "! pip install torch transformers" ] }, { "cell_type": "code", "execution_count": 6, "id": "09e8dffc", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:57:58.605520Z", "iopub.status.busy": "2025-04-09T14:57:58.605233Z", "iopub.status.idle": "2025-04-09T14:58:16.242728Z", "shell.execute_reply": "2025-04-09T14:58:16.241824Z" }, "papermill": { "duration": 17.644708, "end_time": "2025-04-09T14:58:16.244174", "exception": false, "start_time": "2025-04-09T14:57:58.599466", "status": "completed" }, "tags": [] }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3a33316103c840dcbe682c6f0aeea286", "version_major": 2, "version_minor": 0 }, "text/plain": [ "tokenizer_config.json: 0%| | 0.00/48.0 [00:00 self.best_loss + self.delta:\n", " self.counter += 1\n", " if self.verbose:\n", " print(f\"EarlyStopping counter: {self.counter} out of {self.patience}\")\n", " if self.counter >= self.patience:\n", " self.early_stop = True\n", " else:\n", " self.best_loss = val_loss\n", " self.counter = 0" ] }, { "cell_type": "code", "execution_count": 13, "id": "f2584bec", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:16.738341Z", "iopub.status.busy": "2025-04-09T14:58:16.738140Z", "iopub.status.idle": "2025-04-09T14:58:16.743512Z", "shell.execute_reply": "2025-04-09T14:58:16.742634Z" }, "papermill": { "duration": 0.012462, "end_time": "2025-04-09T14:58:16.745020", "exception": false, "start_time": "2025-04-09T14:58:16.732558", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 0 0 ... 0 1 1]\n", "Unique labels: [0 1]\n" ] } ], "source": [ "labels = df_train[\"binary_label\"].values \n", "\n", "print(labels)\n", "print(\"Unique labels:\", np.unique(labels))\n", "# assert set(np.unique(labels)).issubset({0, 1}), \"🔥 Labels must be 0 or 1 for binary classification!\"" ] }, { "cell_type": "code", "execution_count": 14, "id": "99e961ca", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:16.757348Z", "iopub.status.busy": "2025-04-09T14:58:16.757133Z", "iopub.status.idle": "2025-04-09T14:58:16.761985Z", "shell.execute_reply": "2025-04-09T14:58:16.761219Z" }, "papermill": { "duration": 0.012382, "end_time": "2025-04-09T14:58:16.763299", "exception": false, "start_time": "2025-04-09T14:58:16.750917", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "class SelfAttentionFusion(nn.Module):\n", " def __init__(self, embed_dim):\n", " super().__init__()\n", " self.attn = nn.Linear(embed_dim * 2, 2)\n", " self.softmax = nn.Softmax(dim=1)\n", "\n", " def forward(self, x_text, x_img):\n", " stacked = torch.stack([x_text, x_img], dim=1) # (B, 2, D)\n", " attn_weights = self.softmax(self.attn(torch.cat([x_text, x_img], dim=1))).unsqueeze(2) # (B, 2, 1)\n", " fused = (attn_weights * stacked).sum(dim=1) # (B, D)\n", " return fused" ] }, { "cell_type": "code", "execution_count": 15, "id": "09b3f58a", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:16.774550Z", "iopub.status.busy": "2025-04-09T14:58:16.774308Z", "iopub.status.idle": "2025-04-09T14:58:16.780321Z", "shell.execute_reply": "2025-04-09T14:58:16.779507Z" }, "papermill": { "duration": 0.013157, "end_time": "2025-04-09T14:58:16.781710", "exception": false, "start_time": "2025-04-09T14:58:16.768553", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "class BERTResNetClassifier(nn.Module):\n", " def __init__(self, num_classes=2):\n", " super(BERTResNetClassifier, self).__init__()\n", "\n", " self.num_classes = num_classes\n", "\n", " # Image model\n", " self.image_model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)\n", " self.fc_image = nn.Linear(1000, 512)\n", " self.drop_img = nn.Dropout(p=0.3)\n", "\n", " # Text model\n", " self.text_model = BertModel.from_pretrained(\"bert-base-uncased\")\n", " self.fc_text = nn.Linear(self.text_model.config.hidden_size, 512)\n", " self.drop_text = nn.Dropout(p=0.3)\n", "\n", " # Attention-based fusion\n", " self.fusion = SelfAttentionFusion(embed_dim=512)\n", "\n", " # Final classification\n", " self.fc_final = nn.Linear(512, num_classes)\n", "\n", " def forward(self, image, text_input_ids, text_attention_mask):\n", " # Image path\n", " x_img = self.image_model(image)\n", " x_img = self.drop_img(x_img)\n", " x_img = self.fc_image(x_img)\n", "\n", " # Text path\n", " x_text_last_hidden = self.text_model(\n", " input_ids=text_input_ids,\n", " attention_mask=text_attention_mask,\n", " return_dict=False\n", " )[0][:, 0, :]\n", " x_text = self.drop_text(x_text_last_hidden)\n", " x_text = self.fc_text(x_text)\n", "\n", " # Fusion\n", " x_fused = self.fusion(x_text, x_img)\n", "\n", " # Final classifier\n", " logits = self.fc_final(x_fused)\n", " return logits\n" ] }, { "cell_type": "code", "execution_count": 16, "id": "40348647", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:16.792735Z", "iopub.status.busy": "2025-04-09T14:58:16.792516Z", "iopub.status.idle": "2025-04-09T14:58:16.795400Z", "shell.execute_reply": "2025-04-09T14:58:16.794836Z" }, "papermill": { "duration": 0.009703, "end_time": "2025-04-09T14:58:16.796564", "exception": false, "start_time": "2025-04-09T14:58:16.786861", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "from sklearn.utils import compute_class_weight\n", "# import torch_xla.core.xla_model as xm" ] }, { "cell_type": "code", "execution_count": 17, "id": "b8ad064a", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:16.808136Z", "iopub.status.busy": "2025-04-09T14:58:16.807923Z", "iopub.status.idle": "2025-04-09T14:58:18.651123Z", "shell.execute_reply": "2025-04-09T14:58:18.650416Z" }, "papermill": { "duration": 1.850916, "end_time": "2025-04-09T14:58:18.652720", "exception": false, "start_time": "2025-04-09T14:58:16.801804", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cuda\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Downloading: \"https://download.pytorch.org/models/resnet50-0676ba61.pth\" to /root/.cache/torch/hub/checkpoints/resnet50-0676ba61.pth\n", "100%|██████████| 97.8M/97.8M [00:00<00:00, 172MB/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Using 2 GPUs!\n" ] } ], "source": [ "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", "print(device)\n", "model = BERTResNetClassifier(num_classes=2)\n", "\n", "if torch.cuda.device_count() > 1:\n", " print(f\"Using {torch.cuda.device_count()} GPUs!\")\n", " model = nn.DataParallel(model)\n", "model = model.to(device)" ] }, { "cell_type": "code", "execution_count": 18, "id": "bafa7e70", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:18.666026Z", "iopub.status.busy": "2025-04-09T14:58:18.665764Z", "iopub.status.idle": "2025-04-09T14:58:18.670654Z", "shell.execute_reply": "2025-04-09T14:58:18.669984Z" }, "papermill": { "duration": 0.012684, "end_time": "2025-04-09T14:58:18.671827", "exception": false, "start_time": "2025-04-09T14:58:18.659143", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "import torch.nn.functional as F\n", "\n", "class FocalLoss(nn.Module):\n", " def __init__(self, alpha=None, gamma=2.0, reduction='mean'):\n", " super(FocalLoss, self).__init__()\n", " self.alpha = alpha\n", " self.gamma = gamma\n", " self.reduction = reduction\n", "\n", " def forward(self, inputs, targets):\n", " ce_loss = F.cross_entropy(inputs, targets, weight=self.alpha, reduction='none')\n", " pt = torch.exp(-ce_loss) # Prob of correct class\n", " focal_loss = ((1 - pt) ** self.gamma) * ce_loss\n", "\n", " if self.reduction == 'mean':\n", " return focal_loss.mean()\n", " elif self.reduction == 'sum':\n", " return focal_loss.sum()\n", " else:\n", " return focal_loss" ] }, { "cell_type": "code", "execution_count": 19, "id": "9f205502", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:18.684572Z", "iopub.status.busy": "2025-04-09T14:58:18.684346Z", "iopub.status.idle": "2025-04-09T14:58:18.702780Z", "shell.execute_reply": "2025-04-09T14:58:18.701803Z" }, "papermill": { "duration": 0.026304, "end_time": "2025-04-09T14:58:18.704195", "exception": false, "start_time": "2025-04-09T14:58:18.677891", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "from sklearn.utils.class_weight import compute_class_weight\n", "\n", "class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(labels), y=labels)\n", "class_weights = torch.tensor(class_weights, dtype=torch.float).to(device)\n", "\n", "criterion = FocalLoss(alpha=class_weights, gamma=2.0)\n", "# criterion = nn.CrossEntropyLoss(weight=class_weights)\n", "# optimizer = torch.optim.Adam(model.parameters(), lr=1e-5, weight_decay=1e-4)\n", "optimizer = torch.optim.Adam([\n", " {'params': model.module.text_model.parameters(), 'lr': 1e-5},\n", " {'params': model.module.image_model.parameters(), 'lr': 5e-5},\n", " {'params': list(model.module.fc_image.parameters()) +\n", " list(model.module.fc_text.parameters()) +\n", " list(model.module.fusion.parameters()) +\n", " list(model.module.fc_final.parameters()), 'lr': 1e-4}\n", "], weight_decay=1e-5)\n", "\n", "scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=0, min_lr=1e-6, verbose=True)\n", "num_epochs = 20\n", "\n", "def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, num_epochs):\n", " early_stopping = EarlyStopping(patience=5, verbose=True)\n", " \n", " # Training loop\n", " for epoch in range(num_epochs):\n", " model.train()\n", " running_loss = 0.0\n", "\n", " for input_ids, attention_mask, label, img in train_loader:\n", " input_ids = input_ids.to(device)\n", " attention_mask = attention_mask.to(device)\n", " label = label.to(device)\n", " img = img.to(device)\n", " \n", " optimizer.zero_grad()\n", "\n", " # Forward pass\n", " outputs = model(img, input_ids, attention_mask)\n", " loss = criterion(outputs, label)\n", "\n", " # Backward pass and optimization\n", " loss.backward()\n", " torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)\n", " optimizer.step()\n", "\n", " running_loss += loss.item()* img.size(0)\n", " \n", " # Validating model and ensuring loss is decreasing \n", " model.eval()\n", " val_loss = 0.0\n", " correct_preds = 0\n", " with torch.no_grad():\n", " for input_ids, attention_mask, label, img in val_loader:\n", " input_ids = input_ids.to(device)\n", " attention_mask = attention_mask.to(device)\n", " label = label.to(device)\n", " img = img.to(device)\n", " \n", " outputs = model(img, input_ids, attention_mask)\n", " loss = criterion(outputs, label)\n", " val_loss += loss.item() * img.size(0)\n", "\n", " _, preds = torch.max(outputs, 1)\n", " correct_preds += torch.sum(preds == label)\n", "\n", " val_loss = val_loss / len(val_loader.dataset)\n", " accuracy = correct_preds.double() / len(val_loader.dataset)\n", " scheduler.step(val_loss)\n", " print(f'Epoch {epoch+1}/{num_epochs}, Training Loss: {running_loss/len(train_loader.dataset):.4f}, Validation Loss: {val_loss:.4f}, Accuracy: {accuracy:.4f}')\n", "\n", " # Early stopping\n", " early_stopping(val_loss)\n", " if early_stopping.early_stop:\n", " print(\"Early stopping triggered. Stopping training.\")\n", " break\n", "\n", " torch.save(model.state_dict(), '/kaggle/working/model2.pth')" ] }, { "cell_type": "code", "execution_count": 20, "id": "bec89fae", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:18.716491Z", "iopub.status.busy": "2025-04-09T14:58:18.716211Z", "iopub.status.idle": "2025-04-09T14:58:18.722261Z", "shell.execute_reply": "2025-04-09T14:58:18.721597Z" }, "papermill": { "duration": 0.013742, "end_time": "2025-04-09T14:58:18.723546", "exception": false, "start_time": "2025-04-09T14:58:18.709804", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "from sklearn.metrics import precision_score, recall_score\n", "\n", "def evaluate_model(model, test_loader, criterion):\n", " model.eval()\n", " val_losses = []\n", " correct_preds = 0\n", "\n", " all_preds = []\n", " all_labels = []\n", "\n", " with torch.no_grad():\n", " for input_ids, attention_mask, label, img in test_loader:\n", " input_ids = input_ids.to(device)\n", " attention_mask = attention_mask.to(device)\n", " label = label.to(device)\n", " img = img.to(device)\n", "\n", " outputs = model(\n", " image = img,\n", " text_input_ids = input_ids,\n", " text_attention_mask = attention_mask\n", " )\n", "\n", " # Final Softmax layer returns class predictions per sample in batch\n", " # Highest probability value resembles class prediction and is assigned to preds variable\n", " _, preds = torch.max(outputs, dim=1)\n", " #print(outputs)\n", "\n", " # Loss is calculated by applying Cross Entropy Loss\n", " val_loss = criterion(outputs, label)\n", "\n", " # Counting correct model predictions and incrementing correct prediction count\n", " correct_preds += torch.sum(preds == label)\n", " print(preds, label)\n", "\n", " # Appending current loss per batch to list of losses per epoch\n", " val_losses.append(val_loss.item())\n", " \n", " all_preds.extend(preds.cpu().numpy())\n", " all_labels.extend(label.cpu().numpy())\n", " \n", "\n", " accuracy = float((correct_preds.double() / len(df_test)) * 100)\n", " precision = precision_score(all_labels, all_preds, average='weighted')\n", " recall = recall_score(all_labels, all_preds, average='weighted')\n", "\n", " print(\"\\nAccuracy: \", accuracy)\n", " print(\"Precision: \", precision)\n", " print(\"Recall: \", recall)" ] }, { "cell_type": "code", "execution_count": 21, "id": "73760f46", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T14:58:18.735738Z", "iopub.status.busy": "2025-04-09T14:58:18.735525Z", "iopub.status.idle": "2025-04-09T17:15:30.818242Z", "shell.execute_reply": "2025-04-09T17:15:30.817069Z" }, "papermill": { "duration": 8232.090989, "end_time": "2025-04-09T17:15:30.820095", "exception": false, "start_time": "2025-04-09T14:58:18.729106", "status": "completed" }, "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/20, Training Loss: 0.1160, Validation Loss: 0.0951, Accuracy: 0.8409\n", "Epoch 2/20, Training Loss: 0.0839, Validation Loss: 0.0968, Accuracy: 0.8478\n", "EarlyStopping counter: 1 out of 5\n", "Epoch 3/20, Training Loss: 0.0541, Validation Loss: 0.1117, Accuracy: 0.8513\n", "EarlyStopping counter: 2 out of 5\n", "Epoch 4/20, Training Loss: 0.0336, Validation Loss: 0.1642, Accuracy: 0.8517\n", "EarlyStopping counter: 3 out of 5\n", "Epoch 5/20, Training Loss: 0.0198, Validation Loss: 0.2515, Accuracy: 0.8484\n", "EarlyStopping counter: 4 out of 5\n", "Epoch 6/20, Training Loss: 0.0152, Validation Loss: 0.2819, Accuracy: 0.8484\n", "EarlyStopping counter: 5 out of 5\n", "Early stopping triggered. Stopping training.\n", "\n", "\n", "tensor([0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0,\n", " 1, 1, 0, 0, 1, 0, 1, 1], device='cuda:0') tensor([0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0,\n", " 1, 1, 0, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,\n", " 1, 0, 1, 1, 0, 1, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0,\n", " 0, 1, 1, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,\n", " 0, 1, 1, 0, 0, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,\n", " 0, 1, 1, 0, 0, 1, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1,\n", " 0, 0, 0, 0, 1, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1,\n", " 0, 0, 0, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 0, 0, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,\n", " 0, 1, 1, 0, 1, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0,\n", " 1, 1, 0, 1, 1, 1, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0,\n", " 1, 1, 0, 1, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1,\n", " 1, 0, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1,\n", " 1, 0, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 1, 0, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0,\n", " 1, 1, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n", " 1, 1, 0, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 0, 0, 0, 0, 1, 1, 0, 0], device='cuda:0') tensor([0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,\n", " 0, 1, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 0, 0, 1, 0, 0, 1, 0], device='cuda:0') tensor([1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 0, 0, 0, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n", " 1, 0, 0, 1, 0, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,\n", " 1, 0, 0, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1,\n", " 1, 0, 0, 1, 1, 0, 1, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0,\n", " 1, 0, 1, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,\n", " 0, 0, 1, 1, 0, 1, 1, 1], device='cuda:0') tensor([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,\n", " 1, 0, 0, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 1, 1, 1, 0, 0], device='cuda:0') tensor([0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n", " 0, 0, 0, 0, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,\n", " 0, 0, 0, 0, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,\n", " 0, 0, 0, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1,\n", " 0, 0, 1, 1, 0, 1, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,\n", " 1, 0, 1, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1,\n", " 0, 0, 0, 0, 0, 1, 1, 1], device='cuda:0') tensor([1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,\n", " 0, 0, 1, 0, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1,\n", " 0, 1, 0, 0, 0, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 0, 1, 0, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,\n", " 0, 1, 1, 1, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0,\n", " 0, 0, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,\n", " 0, 0, 1, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", " 0, 1, 1, 0, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,\n", " 1, 1, 1, 0, 0, 1, 0, 1], device='cuda:0') tensor([1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0,\n", " 1, 1, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0,\n", " 0, 0, 0, 1, 1, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1,\n", " 0, 0, 0, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,\n", " 0, 1, 0, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 0, 0, 0, 0, 1, 0], device='cuda:0') tensor([0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0,\n", " 0, 0, 0, 1, 0, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0,\n", " 1, 0, 1, 0, 1, 0, 1, 1], device='cuda:0') tensor([0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 1, 1, 0], device='cuda:0') tensor([0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 1, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1,\n", " 1, 1, 1, 1, 1, 0, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1,\n", " 0, 1, 1, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 1, 0, 1, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,\n", " 1, 1, 1, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0') tensor([0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 0, 1, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,\n", " 1, 0, 1, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0,\n", " 0, 0, 0, 0, 0, 1, 0, 1], device='cuda:0') tensor([0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,\n", " 0, 0, 1, 0, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,\n", " 0, 1, 1, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,\n", " 0, 1, 1, 0, 1, 1, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,\n", " 0, 1, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 0, 1, 1, 1], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 0, 0, 0, 0, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 0, 0, 1, 1, 1], device='cuda:0') tensor([0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,\n", " 0, 0, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0,\n", " 1, 1, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1,\n", " 0, 1, 0, 0, 1, 1, 0, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1,\n", " 0, 1, 0, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,\n", " 1, 1, 0, 0, 0, 1, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 0, 0], device='cuda:0') tensor([1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0,\n", " 1, 0, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,\n", " 0, 1, 1, 0, 1, 0, 1, 0], device='cuda:0') tensor([1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0,\n", " 0, 1, 1, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0,\n", " 1, 0, 0, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0,\n", " 1, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1,\n", " 1, 1, 1, 1, 1, 0, 0, 0], device='cuda:0') tensor([0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1,\n", " 1, 1, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1,\n", " 1, 1, 0, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,\n", " 1, 1, 0, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0,\n", " 1, 0, 0, 0, 0, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,\n", " 1, 0, 0, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0,\n", " 1, 0, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 0, 1, 0, 1, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0,\n", " 0, 1, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0,\n", " 0, 1, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,\n", " 1, 0, 0, 1, 0, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0,\n", " 1, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,\n", " 1, 0, 1, 1, 1, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,\n", " 1, 1, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,\n", " 1, 0, 0, 1, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0,\n", " 1, 1, 1, 1, 1, 1, 0, 1], device='cuda:0') tensor([0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0,\n", " 1, 1, 1, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1,\n", " 0, 1, 0, 1, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1,\n", " 0, 0, 0, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0') tensor([0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0,\n", " 0, 1, 0, 0, 1, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0,\n", " 0, 1, 0, 0, 1, 1, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n", " 0, 1, 0, 1, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0,\n", " 1, 1, 0, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,\n", " 1, 1, 0, 1, 1, 0, 0, 1], device='cuda:0') tensor([0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0,\n", " 1, 1, 0, 1, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1,\n", " 1, 0, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 0, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 1, 1, 0, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,\n", " 1, 1, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,\n", " 0, 1, 0, 1, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 0, 1, 1, 1, 0, 1, 1, 0], device='cuda:0') tensor([1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 1, 1, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 0, 1, 1, 1, 0, 1], device='cuda:0') tensor([0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 0, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 0, 0, 1], device='cuda:0') tensor([0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,\n", " 0, 0, 1, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1,\n", " 1, 0, 0, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 0, 1, 1], device='cuda:0') tensor([1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 1, 0, 0, 1, 1, 0, 0, 0], device='cuda:0') tensor([1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,\n", " 1, 0, 0, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 0, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1,\n", " 1, 0, 0, 1, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 0, 0, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1,\n", " 0, 0, 0, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 0, 1, 0], device='cuda:0') tensor([0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n", " 0, 0, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1,\n", " 1, 0, 0, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 1, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1,\n", " 1, 1, 1, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1,\n", " 0, 0, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,\n", " 0, 0, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,\n", " 0, 1, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1,\n", " 0, 1, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 0, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1,\n", " 1, 1, 1, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1,\n", " 1, 1, 1, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 0, 1], device='cuda:0') tensor([1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 1, 1, 0, 1, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,\n", " 0, 0, 1, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0,\n", " 0, 0, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,\n", " 0, 1, 0, 0, 0, 1, 1, 0], device='cuda:0') tensor([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,\n", " 0, 1, 1, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 0, 1, 0, 1, 1, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1,\n", " 0, 0, 0, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,\n", " 0, 1, 1, 1, 0, 0, 1, 0], device='cuda:0') tensor([1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,\n", " 1, 0, 0, 1, 0, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1,\n", " 1, 1, 0, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 0, 1], device='cuda:0') tensor([0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 1], device='cuda:0') tensor([0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 1], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,\n", " 1, 1, 1, 1, 0, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0,\n", " 1, 1, 1, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0,\n", " 0, 1, 0, 0, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,\n", " 0, 1, 0, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,\n", " 1, 1, 1, 0, 0, 1, 1, 0], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 0, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 0, 0, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 0, 0, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0,\n", " 0, 0, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0,\n", " 1, 1, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 0, 1, 1], device='cuda:0') tensor([0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n", " 1, 0, 0, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,\n", " 1, 1, 0, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 0, 0, 1], device='cuda:0') tensor([0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 1, 1, 0, 0, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,\n", " 1, 0, 1, 1, 1, 0, 0, 1], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,\n", " 1, 0, 1, 1, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1,\n", " 0, 0, 1, 1, 1, 1, 0, 1], device='cuda:0') tensor([1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,\n", " 0, 0, 1, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,\n", " 0, 1, 0, 0, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 0, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1,\n", " 1, 0, 1, 0, 0, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n", " 1, 1, 1, 0, 1, 0, 1, 1], device='cuda:0') tensor([1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0,\n", " 1, 0, 1, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0,\n", " 1, 0, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1,\n", " 0, 1, 1, 0, 1, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,\n", " 1, 1, 1, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0,\n", " 0, 0, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,\n", " 0, 0, 0, 1, 0, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,\n", " 1, 0, 1, 0, 1, 0, 1, 0], device='cuda:0') tensor([1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 0, 0, 1, 0, 1], device='cuda:0') tensor([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,\n", " 1, 1, 1, 0, 0, 1, 0, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1,\n", " 1, 0, 0, 0, 0, 0, 1, 1], device='cuda:0') tensor([1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0,\n", " 1, 0, 1, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0,\n", " 1, 1, 0, 1, 0, 1, 0, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,\n", " 0, 0, 1, 0, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,\n", " 0, 1, 1, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,\n", " 1, 1, 1, 1, 0, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0,\n", " 1, 1, 1, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,\n", " 1, 1, 1, 1, 0, 1, 1, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,\n", " 1, 1, 0, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 1, 1, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,\n", " 0, 1, 1, 1, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,\n", " 0, 0, 1, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1,\n", " 0, 0, 0, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n", " 1, 0, 1, 1, 1, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,\n", " 0, 0, 0, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0,\n", " 0, 1, 0, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1,\n", " 1, 0, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,\n", " 0, 1, 0, 0, 0, 1, 1, 0], device='cuda:0') tensor([1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 1, 0, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 1, 1, 1, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,\n", " 1, 0, 1, 1, 1, 0, 0, 1], device='cuda:0') tensor([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1,\n", " 1, 0, 0, 1, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,\n", " 0, 1, 1, 1, 0, 0, 0, 1], device='cuda:0') tensor([0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0,\n", " 0, 1, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1,\n", " 0, 1, 1, 1, 0, 1, 1, 0], device='cuda:0') tensor([0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,\n", " 1, 0, 1, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,\n", " 1, 0, 1, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 0, 1, 0, 1, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0,\n", " 1, 1, 0, 0, 1, 0, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,\n", " 0, 1, 0, 0, 0, 1, 1, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,\n", " 1, 0, 1, 1, 0, 1, 1, 0], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1,\n", " 1, 0, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 0, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 0, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 0, 0, 1, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0,\n", " 0, 1, 0, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 1, 1, 1, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1,\n", " 0, 0, 1, 1, 1, 1, 1, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0,\n", " 1, 1, 0, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1,\n", " 1, 0, 0, 1, 0, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1,\n", " 1, 0, 0, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 0], device='cuda:0') tensor([1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1,\n", " 0, 1, 1, 0, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1,\n", " 1, 0, 0, 1, 1, 1, 1, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1,\n", " 1, 1, 0, 1, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0,\n", " 0, 1, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 1, 0, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0,\n", " 1, 1, 1, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 0, 1, 1, 1, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 0, 0, 1, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0,\n", " 1, 0, 1, 0, 1, 1, 1, 1], device='cuda:0') tensor([1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1,\n", " 0, 0, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1,\n", " 0, 0, 0, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,\n", " 0, 1, 1, 1, 0, 1, 0, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0,\n", " 0, 1, 1, 0, 0, 0, 0, 0], device='cuda:0') tensor([1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,\n", " 1, 0, 1, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,\n", " 0, 1, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1,\n", " 0, 1, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 1, 1], device='cuda:0') tensor([0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n", " 1, 0, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0,\n", " 1, 1, 0, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 0, 1, 0, 1, 0, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,\n", " 1, 0, 1, 0, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,\n", " 1, 0, 1, 0, 1, 1, 0, 1], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0,\n", " 1, 0, 1, 0, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 0, 0], device='cuda:0') tensor([0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1,\n", " 0, 0, 1, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1,\n", " 0, 1, 0, 1, 0, 0, 1, 1], device='cuda:0') tensor([1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1,\n", " 0, 1, 0, 1, 0, 1, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 0, 0], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1,\n", " 0, 0, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1,\n", " 0, 0, 1, 1, 0, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1,\n", " 0, 0, 1, 1, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,\n", " 0, 1, 0, 0, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n", " 1, 1, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n", " 1, 1, 1, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,\n", " 1, 0, 1, 1, 1, 1, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,\n", " 0, 1, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,\n", " 1, 0, 0, 0, 1, 0, 1, 1], device='cuda:0') tensor([0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,\n", " 1, 1, 0, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 1, 1, 1], device='cuda:0') tensor([0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 1, 1, 1], device='cuda:0')\n", "tensor([0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 0, 1, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,\n", " 1, 0, 0, 0, 1, 0, 0, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,\n", " 1, 1, 0, 0, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1,\n", " 1, 1, 0, 0, 0, 1, 1, 0], device='cuda:0') tensor([0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1,\n", " 0, 1, 0, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 0, 1, 0], device='cuda:0') tensor([0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1,\n", " 1, 0, 1, 0, 0, 0, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,\n", " 0, 1, 1, 0, 1, 1, 1, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0,\n", " 0, 1, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,\n", " 1, 1, 0, 0, 0, 0, 0, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1,\n", " 1, 1, 1, 0, 0, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 1, 1, 0, 0, 0], device='cuda:0') tensor([0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0,\n", " 1, 1, 1, 1, 1, 0, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 1, 0, 0, 1, 1, 0, 1], device='cuda:0') tensor([1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1,\n", " 1, 1, 1, 0, 1, 1, 0, 1], device='cuda:0')\n", "tensor([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,\n", " 1, 0, 1, 1, 0, 1, 0, 0], device='cuda:0') tensor([0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,\n", " 1, 0, 1, 1, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0,\n", " 0, 1, 0, 1, 1, 1, 1, 0], device='cuda:0') tensor([0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,\n", " 0, 1, 0, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,\n", " 0, 1, 0, 0, 1, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1,\n", " 0, 1, 1, 0, 1, 0, 1, 1], device='cuda:0')\n", "tensor([0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,\n", " 1, 1, 1, 0, 0, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1,\n", " 1, 1, 1, 0, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 1, 1, 1], device='cuda:0') tensor([1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1,\n", " 0, 0, 0, 0, 1, 1, 1, 1], device='cuda:0')\n", "tensor([1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0,\n", " 0, 1, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0,\n", " 0, 1, 0, 1, 1, 1, 1, 0], device='cuda:0')\n", "tensor([1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0,\n", " 1, 1, 0, 0, 0, 0, 0, 0], device='cuda:0') tensor([1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0,\n", " 0, 0, 0, 0, 0, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 1, 0, 1], device='cuda:0') tensor([1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n", " 0, 0, 0, 1, 1, 0, 0, 1], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1,\n", " 1, 0, 0, 0, 0, 1, 1, 0], device='cuda:0') tensor([0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,\n", " 1, 0, 0, 0, 0, 1, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1,\n", " 1, 1, 1, 0, 1, 0, 0, 0], device='cuda:0') tensor([0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,\n", " 1, 1, 1, 0, 1, 0, 0, 0], device='cuda:0')\n", "tensor([1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0,\n", " 1, 1, 0, 1, 1, 1, 0, 0], device='cuda:0') tensor([0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0,\n", " 0, 0, 0, 0, 1, 1, 0, 0], device='cuda:0')\n", "tensor([0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1,\n", " 0, 1, 0, 1, 0, 0, 1, 0], device='cuda:0') tensor([1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1,\n", " 0, 1, 0, 1, 0, 0, 1, 0], device='cuda:0')\n", "tensor([1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0,\n", " 1, 0, 0, 0, 1, 1, 1, 0], device='cuda:0') tensor([1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1,\n", " 1, 0, 0, 0, 1, 1, 1, 0], device='cuda:0')\n", "tensor([0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,\n", " 1, 0, 0, 1, 1, 0, 1, 0], device='cuda:0') tensor([0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,\n", " 1, 0, 0, 1, 1, 0, 1, 0], device='cuda:0')\n", "tensor([0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1,\n", " 0, 0, 0, 0, 0, 0, 1, 1], device='cuda:0') tensor([0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1,\n", " 0, 0, 1, 0, 0, 0, 1, 1], device='cuda:0')\n", "tensor([1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0,\n", " 0, 1, 0, 1, 0, 0, 0, 0], device='cuda:0') tensor([0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0,\n", " 0, 1, 0, 1, 0, 1, 0, 0], device='cuda:0')\n", "tensor([1, 0, 0, 1, 1, 1, 0, 0, 1], device='cuda:0') tensor([1, 0, 1, 1, 1, 0, 0, 0, 1], device='cuda:0')\n", "\n", "Accuracy: 85.61424874410108\n", "Precision: 0.8561740091595716\n", "Recall: 0.8561424874410108\n" ] } ], "source": [ "train_model(model, train_loader,val_loader, criterion, optimizer, scheduler, num_epochs)\n", "print(\"\\n\")\n", "evaluate_model(model, test_loader, criterion)" ] }, { "cell_type": "code", "execution_count": 22, "id": "afc77f76", "metadata": { "execution": { "iopub.execute_input": "2025-04-09T17:15:30.856373Z", "iopub.status.busy": "2025-04-09T17:15:30.856007Z", "iopub.status.idle": "2025-04-09T17:15:32.493494Z", "shell.execute_reply": "2025-04-09T17:15:32.492607Z" }, "papermill": { "duration": 1.656113, "end_time": "2025-04-09T17:15:32.495130", "exception": false, "start_time": "2025-04-09T17:15:30.839017", "status": "completed" }, "tags": [] }, "outputs": [], "source": [ "torch.save(model, \"/kaggle/working/model.pt\")\n", "torch.save(model.state_dict(), \"/kaggle/working/state_dict.pth\") " ] }, { "cell_type": "code", "execution_count": null, "id": "f409be3f", "metadata": { "papermill": { "duration": 0.015863, "end_time": "2025-04-09T17:15:32.527601", "exception": false, "start_time": "2025-04-09T17:15:32.511738", "status": "completed" }, "tags": [] }, "outputs": [], "source": [] } ], "metadata": { "kaggle": { "accelerator": "nvidiaTeslaT4", "dataSources": [ { "datasetId": 7057067, "sourceId": 11328921, "sourceType": "datasetVersion" } ], "dockerImageVersionId": 30919, "isGpuEnabled": true, "isInternetEnabled": true, "language": "python", "sourceType": "notebook" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" }, "papermill": { "default_parameters": {}, "duration": 8283.491684, "end_time": "2025-04-09T17:15:35.373455", "environment_variables": {}, "exception": null, "input_path": "__notebook__.ipynb", "output_path": "__notebook__.ipynb", "parameters": {}, "start_time": "2025-04-09T14:57:31.881771", "version": "2.6.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0285041787f74b7ba095ace50a72e574": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "07c6b547766e4cf0a6123096a6f21626": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "0e19184d5f6b4d94b5919750e8fcf274": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "12ea9a83d1cd4d88ad8a909e27473ed0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "156fc409fd7f4673a17579f563c836a4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_86b19f2561a642c498dcabc829f0086b", "placeholder": "​", "style": "IPY_MODEL_350506cb0cc5476f84da42d58c77ffc1", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, "19ff028ca56e4b9997fa56c81ebd6bde": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1b4a1d6ebf9f4a48b8e1f705c4a90fdf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "1cd8b01c50ca4e92ada8fd06f58059c1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "1f059dc277da4644b34aa54861d2a973": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_58541b5838484ab3b01718408383c2db", "placeholder": "​", "style": "IPY_MODEL_dee6108f6ba247a6bf060f2e14d64614", "tabbable": null, "tooltip": null, "value": " 440M/440M [00:01<00:00, 250MB/s]" } }, "21f57957cee04faabfa4944b9e4c09f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cea1a56a25c44991bd38712b04ef55cd", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_37b25998aacb4a079a7617313c5fd0e6", "tabbable": null, "tooltip": null, "value": 48.0 } }, "2644698b31044ed88b8fd330f3c02fee": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_57e41f24608a421b9cfe928094120116", "placeholder": "​", "style": "IPY_MODEL_0285041787f74b7ba095ace50a72e574", "tabbable": null, "tooltip": null, "value": "tokenizer.json: 100%" } }, "26a54b761e244f6abf6b2d3fb1cdfdeb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35b5ac5e42ba4efba7c22e4b10cc0265", "placeholder": "​", "style": "IPY_MODEL_69727cbcde6c43fead6243f53dd5fdca", "tabbable": null, "tooltip": null, "value": " 570/570 [00:00<00:00, 54.4kB/s]" } }, "32bccc63f7044ac497bd8ad9c918f44e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_87fe0b5e67ec41bc9e26a58f33f81a18", "IPY_MODEL_be7fb2b086554b139c08b8dcd3b4ea39", "IPY_MODEL_57f05aa864ae40d0ab176845e5a0fab7" ], "layout": "IPY_MODEL_f49f3f0db628406d88cfac2cb38726b2", "tabbable": null, "tooltip": null } }, "350506cb0cc5476f84da42d58c77ffc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "35b5ac5e42ba4efba7c22e4b10cc0265": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "37b25998aacb4a079a7617313c5fd0e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "39eaafd9f45a48c3abf8ad7ecd444af2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3a33316103c840dcbe682c6f0aeea286": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_c85303099ccc4b81ba9b7f4e6ff139ae", "IPY_MODEL_21f57957cee04faabfa4944b9e4c09f0", "IPY_MODEL_7b50ea08c3f947f0a014f74c634f832a" ], "layout": "IPY_MODEL_9f5a5a8f76ae43a4992130e49bd273c1", "tabbable": null, "tooltip": null } }, "3bc3c45949334ae2bafc543ce27d59f2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3c5f7725c98149cd9576004f9a5d3387": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e6320c15f0004a2ca37e52fb1a10cc26", "max": 440449768.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b855e0a0c2f5489fa7b47f5461d28d94", "tabbable": null, "tooltip": null, "value": 440449768.0 } }, "44a0a0f1927d4b4abfa23702200b5dfe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2644698b31044ed88b8fd330f3c02fee", "IPY_MODEL_95835c43ca944cefb167946b29d738bd", "IPY_MODEL_ff869ec0da4c45bb87b2e84c04c7789b" ], "layout": "IPY_MODEL_b21344ec94e94243ba2ec46a64c85281", "tabbable": null, "tooltip": null } }, "4e9cb8cc1d83476aa2e41fa0370abfac": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4edcb2d0ea964d348230e57d8938ce49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_cc637d8fd2ce455eae2f978e58096187", "IPY_MODEL_97af4c5b554e48f9a52d2d0cfbbe7ef4", "IPY_MODEL_26a54b761e244f6abf6b2d3fb1cdfdeb" ], "layout": "IPY_MODEL_19ff028ca56e4b9997fa56c81ebd6bde", "tabbable": null, "tooltip": null } }, "57e41f24608a421b9cfe928094120116": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "57f05aa864ae40d0ab176845e5a0fab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e9cb8cc1d83476aa2e41fa0370abfac", "placeholder": "​", "style": "IPY_MODEL_82c27606d99049eb8bf8af591d8aa869", "tabbable": null, "tooltip": null, "value": " 232k/232k [00:00<00:00, 5.02MB/s]" } }, "58541b5838484ab3b01718408383c2db": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "64736576032745efbe91b3eabb802825": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "650f016f79034b158ba69259f81fd267": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "69727cbcde6c43fead6243f53dd5fdca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "7b50ea08c3f947f0a014f74c634f832a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_badf7a1fdc1a462eb5eb834b3b8ca119", "placeholder": "​", "style": "IPY_MODEL_07c6b547766e4cf0a6123096a6f21626", "tabbable": null, "tooltip": null, "value": " 48.0/48.0 [00:00<00:00, 4.28kB/s]" } }, "7b6c88ddab4c4613b22abdcbe8b273c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "82c27606d99049eb8bf8af591d8aa869": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "82c6dcf1f6aa478a8332f5d5a0b83d2c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86b19f2561a642c498dcabc829f0086b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "87fe0b5e67ec41bc9e26a58f33f81a18": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3bc3c45949334ae2bafc543ce27d59f2", "placeholder": "​", "style": "IPY_MODEL_d9b30b7841094cf1b547eb43def9f569", "tabbable": null, "tooltip": null, "value": "vocab.txt: 100%" } }, "95835c43ca944cefb167946b29d738bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0e19184d5f6b4d94b5919750e8fcf274", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7b6c88ddab4c4613b22abdcbe8b273c0", "tabbable": null, "tooltip": null, "value": 466062.0 } }, "95bdf94084dd4ab2b9daaed5b4324c19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "97af4c5b554e48f9a52d2d0cfbbe7ef4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf2bb8d025de4dd08a8a4e3460dc8524", "max": 570.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_650f016f79034b158ba69259f81fd267", "tabbable": null, "tooltip": null, "value": 570.0 } }, "9f5a5a8f76ae43a4992130e49bd273c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b21344ec94e94243ba2ec46a64c85281": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b855e0a0c2f5489fa7b47f5461d28d94": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "badf7a1fdc1a462eb5eb834b3b8ca119": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "be5ed94ddf5549149c06487d14d0150e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "be7fb2b086554b139c08b8dcd3b4ea39": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_39eaafd9f45a48c3abf8ad7ecd444af2", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_64736576032745efbe91b3eabb802825", "tabbable": null, "tooltip": null, "value": 231508.0 } }, "c85303099ccc4b81ba9b7f4e6ff139ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82c6dcf1f6aa478a8332f5d5a0b83d2c", "placeholder": "​", "style": "IPY_MODEL_12ea9a83d1cd4d88ad8a909e27473ed0", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json: 100%" } }, "cc637d8fd2ce455eae2f978e58096187": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_95bdf94084dd4ab2b9daaed5b4324c19", "placeholder": "​", "style": "IPY_MODEL_f6f5e70be7024b0ebaac6ed8c224577d", "tabbable": null, "tooltip": null, "value": "config.json: 100%" } }, "cea1a56a25c44991bd38712b04ef55cd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "cf2bb8d025de4dd08a8a4e3460dc8524": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d9b30b7841094cf1b547eb43def9f569": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "da7ae94dd26a44b9851cf104543c0fd3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_156fc409fd7f4673a17579f563c836a4", "IPY_MODEL_3c5f7725c98149cd9576004f9a5d3387", "IPY_MODEL_1f059dc277da4644b34aa54861d2a973" ], "layout": "IPY_MODEL_1b4a1d6ebf9f4a48b8e1f705c4a90fdf", "tabbable": null, "tooltip": null } }, "dee6108f6ba247a6bf060f2e14d64614": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "e6320c15f0004a2ca37e52fb1a10cc26": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f49f3f0db628406d88cfac2cb38726b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f6f5e70be7024b0ebaac6ed8c224577d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ff869ec0da4c45bb87b2e84c04c7789b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_be5ed94ddf5549149c06487d14d0150e", "placeholder": "​", "style": "IPY_MODEL_1cd8b01c50ca4e92ada8fd06f58059c1", "tabbable": null, "tooltip": null, "value": " 466k/466k [00:00<00:00, 23.2MB/s]" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }