Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import BertTokenizer, BertModel | |
from torchvision.models import resnet50, ResNet50_Weights | |
from torchvision.transforms import v2 | |
from PIL import Image | |
import pandas as pd | |
from tqdm import tqdm | |
# DEVICE SETUP | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("\nπ Using device:", device) | |
# Load tokenizer | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
# ----- HELPER FUNCTIONS ----- | |
def get_bert_embedding(text): | |
inputs = tokenizer.encode_plus( | |
text, add_special_tokens=True, | |
return_tensors='pt', max_length=80, | |
truncation=True, padding='max_length' | |
) | |
return inputs['input_ids'].squeeze(0), inputs['attention_mask'].squeeze(0) | |
# ----- DATASET CLASS ----- | |
class FakedditDataset(Dataset): | |
def __init__(self, df, text_field="clean_title", label_field="binary_label", image_id="id"): | |
self.df = df.reset_index(drop=True) | |
self.text_field = text_field | |
self.label_field = label_field | |
self.image_id = image_id | |
self.transform = v2.Compose([ | |
v2.Resize((256, 256)), | |
v2.ToImage(), | |
v2.ToDtype(torch.float32, scale=True), | |
v2.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
def __len__(self): | |
return len(self.df) | |
def __getitem__(self, idx): | |
text = self.df.at[idx, self.text_field] | |
label = self.df.at[idx, self.label_field] | |
image_path = f"./val_images/{self.df.at[idx, self.image_id]}.jpg" | |
image = Image.open(image_path).convert('RGB') | |
image = self.transform(image) | |
input_ids, attention_mask = get_bert_embedding(str(text)) | |
return image, input_ids, attention_mask, torch.tensor(label, dtype=torch.long) | |
# ----- MODEL CLASSES ----- | |
class SelfAttentionFusion(nn.Module): | |
def __init__(self, embed_dim): | |
super().__init__() | |
self.attn = nn.Linear(embed_dim * 2, 2) | |
self.softmax = nn.Softmax(dim=1) | |
def forward(self, x_text, x_img): | |
stacked = torch.stack([x_text, x_img], dim=1) | |
attn_weights = self.softmax(self.attn(torch.cat([x_text, x_img], dim=1))).unsqueeze(2) | |
fused = (attn_weights * stacked).sum(dim=1) | |
return fused | |
class BERTResNetClassifier(nn.Module): | |
def __init__(self, num_classes=2): | |
super().__init__() | |
self.image_model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) | |
self.fc_image = nn.Linear(1000, 512) | |
self.drop_img = nn.Dropout(0.3) | |
self.text_model = BertModel.from_pretrained("bert-base-uncased") | |
self.fc_text = nn.Linear(self.text_model.config.hidden_size, 512) | |
self.drop_text = nn.Dropout(0.3) | |
self.fusion = SelfAttentionFusion(512) | |
self.fc_final = nn.Linear(512, num_classes) | |
def forward(self, image, input_ids, attention_mask): | |
x_img = self.image_model(image) | |
x_img = self.drop_img(x_img) | |
x_img = self.fc_image(x_img) | |
x_text = self.text_model(input_ids=input_ids, attention_mask=attention_mask)[0][:, 0, :] | |
x_text = self.drop_text(x_text) | |
x_text = self.fc_text(x_text) | |
x_fused = self.fusion(x_text, x_img) | |
return self.fc_final(x_fused) | |
# ----- LOAD DATA ----- | |
df = pd.read_csv("./val_output.csv") | |
print("π Loaded validation CSV with", len(df), "samples") | |
val_dataset = FakedditDataset(df) | |
val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False) | |
# ----- LOAD MODEL STATE ----- | |
def remove_module_prefix(state_dict): | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k.replace('module.', '') | |
new_state_dict[name] = v | |
return new_state_dict | |
print("π¦ Loading model weights...") | |
state_dict = torch.load("state_dict.pth", map_location=device) | |
clean_state_dict = remove_module_prefix(state_dict) | |
model = BERTResNetClassifier(num_classes=2) | |
model.load_state_dict(clean_state_dict) | |
model.to(device) | |
model.eval() | |
print("β Model loaded and ready for evaluation") | |
# ----- EVALUATION ----- | |
correct = 0 | |
total = 0 | |
print("\nπ Starting evaluation...") | |
with torch.no_grad(): | |
for batch in tqdm(val_loader, desc="Evaluating"): | |
images, input_ids, attention_mask, labels = batch | |
images = images.to(device) | |
input_ids = input_ids.to(device) | |
attention_mask = attention_mask.to(device) | |
labels = labels.to(device) | |
outputs = model(images, input_ids, attention_mask) | |
preds = torch.argmax(outputs, dim=1) | |
correct += (preds == labels).sum().item() | |
total += labels.size(0) | |
accuracy = correct / total * 100 | |
print(f"\nπ― Final Validation Accuracy: {accuracy:.2f}%") |