Spaces:
Sleeping
Sleeping
import torch | |
from transformers import BertTokenizer, BertModel | |
import torch.nn as nn | |
from torchvision.models import resnet50, ResNet50_Weights | |
from PIL import Image | |
from torchvision.transforms import v2 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print("\nπ Using device:", device) | |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") | |
def get_bert_embedding(text): | |
inputs = tokenizer.encode_plus( | |
text, add_special_tokens=True, | |
return_tensors='pt', max_length=80, | |
truncation=True, padding='max_length' | |
) | |
return inputs['input_ids'].squeeze(0), inputs['attention_mask'].squeeze(0) | |
class SelfAttentionFusion(nn.Module): | |
def __init__(self, embed_dim): | |
super().__init__() | |
self.attn = nn.Linear(embed_dim * 2, 2) | |
self.softmax = nn.Softmax(dim=1) | |
def forward(self, x_text, x_img): | |
stacked = torch.stack([x_text, x_img], dim=1) | |
attn_weights = self.softmax(self.attn(torch.cat([x_text, x_img], dim=1))).unsqueeze(2) | |
fused = (attn_weights * stacked).sum(dim=1) | |
return fused | |
class BERTResNetClassifier(nn.Module): | |
def __init__(self, num_classes=2): | |
super().__init__() | |
self.image_model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V1) | |
self.fc_image = nn.Linear(1000, 512) | |
self.drop_img = nn.Dropout(0.3) | |
self.text_model = BertModel.from_pretrained("bert-base-uncased") | |
self.fc_text = nn.Linear(self.text_model.config.hidden_size, 512) | |
self.drop_text = nn.Dropout(0.3) | |
self.fusion = SelfAttentionFusion(512) | |
self.fc_final = nn.Linear(512, num_classes) | |
def forward(self, image, input_ids, attention_mask): | |
x_img = self.image_model(image) | |
x_img = self.drop_img(x_img) | |
x_img = self.fc_image(x_img) | |
x_text = self.text_model(input_ids=input_ids, attention_mask=attention_mask)[0][:, 0, :] | |
x_text = self.drop_text(x_text) | |
x_text = self.fc_text(x_text) | |
x_fused = self.fusion(x_text, x_img) | |
return self.fc_final(x_fused) | |
def remove_module_prefix(state_dict): | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k.replace('module.', '') | |
new_state_dict[name] = v | |
return new_state_dict | |
print("π¦ Loading model weights...") | |
state_dict = torch.load("state_dict.pth", map_location=device) | |
clean_state_dict = remove_module_prefix(state_dict) | |
model = BERTResNetClassifier(num_classes=2) | |
model.load_state_dict(clean_state_dict) | |
model.to(device) | |
model.eval() | |
print("β Model loaded successfully.") | |
text = "The Traditionalists - Whole Roasted Kitten" | |
image_address = "./image.png" | |
image = Image.open(image_address).convert("RGB") | |
transform = v2.Compose([ | |
v2.Resize((256, 256)), | |
v2.ToImage(), | |
v2.ToDtype(torch.float32, scale=True), | |
v2.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
image = transform(image).unsqueeze(0) | |
input_ids, attention_mask = get_bert_embedding(text) | |
input_ids = input_ids.unsqueeze(0) | |
attention_mask = attention_mask.unsqueeze(0) | |
image.to(device) | |
attention_mask.to(device) | |
input_ids.to(device) | |
output = model(image, input_ids, attention_mask) | |
# PRINT OUTPUT | |
classes = ["Fake", "Real"] | |
probabilities = torch.nn.functional.softmax(output, dim=1) | |
prob_values = [f"{prob:.2%}" for prob in probabilities[0].tolist()] | |
print("Probabilities:", prob_values) | |
prediction_id = torch.argmax(output, dim=1).item() | |
print("Prediction:", classes[prediction_id]) |