Spaces:
Running
Running
Update model.py
Browse files
model.py
CHANGED
@@ -24,9 +24,23 @@ class SuicidalIntentModel:
|
|
24 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
25 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
26 |
|
27 |
-
def
|
28 |
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
29 |
with torch.no_grad():
|
30 |
logits = self.model(**inputs).logits
|
31 |
probs = torch.nn.functional.softmax(logits, dim=1)
|
32 |
return float(probs[0][1]) # Probability of suicidal intent
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
25 |
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
26 |
|
27 |
+
def _score_text(self, text):
|
28 |
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
29 |
with torch.no_grad():
|
30 |
logits = self.model(**inputs).logits
|
31 |
probs = torch.nn.functional.softmax(logits, dim=1)
|
32 |
return float(probs[0][1]) # Probability of suicidal intent
|
33 |
+
|
34 |
+
def predict(self, text, window_size=20, stride=10):
|
35 |
+
tokens = self.tokenizer.tokenize(text)
|
36 |
+
if len(tokens) <= window_size:
|
37 |
+
return self._score_text(text)
|
38 |
+
|
39 |
+
scores = []
|
40 |
+
for i in range(0, len(tokens) - window_size + 1, stride):
|
41 |
+
window_tokens = tokens[i:i + window_size]
|
42 |
+
window_text = self.tokenizer.convert_tokens_to_string(window_tokens)
|
43 |
+
score = self._score_text(window_text)
|
44 |
+
scores.append(score)
|
45 |
+
|
46 |
+
return max(scores, default=0.0)
|