Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from fastapi import FastAPI, Request
|
3 |
+
import uvicorn
|
4 |
+
|
5 |
+
from uagents import Agent, Context, Bureau
|
6 |
+
|
7 |
+
# Load emotion detection model
|
8 |
+
emotion_model = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
9 |
+
|
10 |
+
def analyze_text_metrics(text):
|
11 |
+
results = emotion_model(text)
|
12 |
+
text_lower = text.lower()
|
13 |
+
|
14 |
+
suicide_keywords = ["kill myself", "suicidal", "die", "ending it", "pills", "overdose", "no way out"]
|
15 |
+
psychosis_keywords = ["voices", "hallucinate", "not real", "they’re watching me", "i’m not me"]
|
16 |
+
|
17 |
+
metrics = {
|
18 |
+
"self_harm": 0,
|
19 |
+
"homicidal": 0,
|
20 |
+
"distress": 0,
|
21 |
+
"psychosis": 0
|
22 |
+
}
|
23 |
+
|
24 |
+
for result in results:
|
25 |
+
label = result['label']
|
26 |
+
score = result['score']
|
27 |
+
if label == 'sadness':
|
28 |
+
metrics["self_harm"] += score
|
29 |
+
metrics["distress"] += score * 0.6
|
30 |
+
elif label in ['anger', 'fear']:
|
31 |
+
metrics["homicidal"] += score
|
32 |
+
metrics["distress"] += score * 0.5
|
33 |
+
elif label == 'joy':
|
34 |
+
metrics["psychosis"] += score * 0.3
|
35 |
+
elif label == 'surprise':
|
36 |
+
metrics["psychosis"] += score * 0.5
|
37 |
+
|
38 |
+
if any(word in text_lower for word in suicide_keywords):
|
39 |
+
metrics["self_harm"] = max(metrics["self_harm"], 0.8)
|
40 |
+
if any(word in text_lower for word in psychosis_keywords):
|
41 |
+
metrics["psychosis"] = max(metrics["psychosis"], 0.8)
|
42 |
+
|
43 |
+
for k in metrics:
|
44 |
+
metrics[k] = round(min(metrics[k] * 100, 100), 2)
|
45 |
+
|
46 |
+
return metrics
|
47 |
+
|
48 |
+
# Define uAgent
|
49 |
+
agent = Agent(name="sentiment_agent")
|
50 |
+
|
51 |
+
@agent.on_message()
|
52 |
+
async def handle_message(ctx: Context, sender: str, msg: str):
|
53 |
+
metrics = analyze_text_metrics(msg)
|
54 |
+
await ctx.send(sender, str(metrics))
|
55 |
+
|
56 |
+
# FastAPI wrapper
|
57 |
+
app = FastAPI()
|
58 |
+
|
59 |
+
@app.post("/")
|
60 |
+
async def analyze_text(request: Request):
|
61 |
+
data = await request.json()
|
62 |
+
text = data.get("text", "")
|
63 |
+
result = analyze_text_metrics(text)
|
64 |
+
return result
|
65 |
+
|
66 |
+
# Run both FastAPI and agent
|
67 |
+
if __name__ == "__main__":
|
68 |
+
bureau = Bureau()
|
69 |
+
bureau.add(agent)
|
70 |
+
bureau.run_in_thread()
|
71 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|