Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import AutoTokenizer, pipeline | |
| from transformers import ( | |
| TFAutoModelForSequenceClassification as AutoModelForSequenceClassification, | |
| ) | |
| st.title("Classifier") | |
| demo_options = { | |
| "Non-toxic": "Had a wonderful weekend at the park. Enjoyed the beautiful weather!", | |
| "Severe-toxic": "WIP", | |
| "Obscene": "I don't give a fuck about your opinion", | |
| "Threat": "WIP", | |
| "Insult": "Are you always this incompetent?", | |
| "Identity Hate": "WIP", | |
| } | |
| selected_demo = st.selectbox("Demos", options=list(demo_options.keys())) | |
| text = st.text_area("Input text", demo_options[selected_demo], height=250) | |
| submit = False | |
| model_name = "" | |
| model_mapping = { | |
| "Toxicity - 1 Epoch": "RobCaamano/toxicity", | |
| "Toxicity - 8 Epochs": "RobCaamano/toxicity_update", | |
| "Toxicity - Weighted": "RobCaamano/toxicity_weighted", | |
| "DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english", | |
| } | |
| with st.container(): | |
| selected_model_display = st.selectbox( | |
| "Select Model", | |
| options=list(model_mapping.keys()) | |
| ) | |
| model_name = model_mapping[selected_model_display] | |
| submit = st.button("Submit", type="primary") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| clf = pipeline( | |
| "sentiment-analysis", model=model, tokenizer=tokenizer, return_all_scores=True | |
| ) | |
| input = tokenizer(text, return_tensors="tf") | |
| if submit: | |
| results = dict(d.values() for d in clf(text)[0]) | |
| if model_name in ["RobCaamano/toxicity", "RobCaamano/toxicity_update", "RobCaamano/toxicity_weighted"]: | |
| classes = {k: results[k] for k in results.keys() if not k == "toxic"} | |
| max_class = max(classes, key=classes.get) | |
| probability = classes[max_class] | |
| if results['toxic'] >= 0.5: | |
| result_df = pd.DataFrame({ | |
| 'Toxic': 'Yes', | |
| 'Toxicity Class': [max_class], | |
| 'Probability': [probability] | |
| }, index=[0]) | |
| else: | |
| result_df = pd.DataFrame({ | |
| 'Toxic': 'No', | |
| 'Toxicity Class': 'This text is not toxic', | |
| }, index=[0]) | |
| elif model_name == "distilbert-base-uncased-finetuned-sst-2-english": | |
| result = max(results, key=results.get) | |
| probability = results[result] | |
| result_df = pd.DataFrame({ | |
| 'Result': [result], | |
| 'Probability': [probability], | |
| }, index=[0]) | |
| st.table(result_df) | |
| expander = st.expander("View Raw output") | |
| expander.write(results) |