Rob Caamano
App 2.3
4a0592e unverified
raw
history blame
1.91 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer
from transformers import (
TFAutoModelForSequenceClassification as AutoModelForSequenceClassification,
)
from transformers import pipeline
st.title("Detecting Toxic Tweets")
demo = """I'm so proud of myself for accomplishing my goals today. #motivation #success"""
text = st.text_area("Input text", demo, height=250)
# Add a drop-down menu for model selection
model_options = {
"DistilBERT Base Uncased (SST-2)": "distilbert-base-uncased-finetuned-sst-2-english",
"Fine-tuned Toxicity Model": "RobCaamano/toxicity_distilbert",
}
selected_model = st.selectbox("Select Model", options=list(model_options.keys()))
mod_name = model_options[selected_model]
tokenizer = AutoTokenizer.from_pretrained(mod_name)
model = AutoModelForSequenceClassification.from_pretrained(mod_name)
# Update the id2label mapping for the fine-tuned model
if selected_model == "Fine-tuned Toxicity Model":
model.config.id2label = {i: f"LABEL_{i}" for i in range(model.config.num_labels)}
clf = pipeline(
"text-classification", model=model, tokenizer=tokenizer, return_all_scores=True
)
input = tokenizer(text, return_tensors="tf")
if st.button("Submit", type="primary"):
results = clf(text)[0]
if selected_model == "Fine-tuned Toxicity Model":
max_class = max(results, key=lambda x: x["score"])
max_class["label"] = max_class["label"].split("_")[-1] # Extract the toxicity class from the label
else:
max_class = max(results, key=lambda x: x["score"])
tweet_portion = text[:50] + "..." if len(text) > 50 else text
# Create and display the table
df = pd.DataFrame(
{
"Tweet (portion)": [tweet_portion],
"Highest Toxicity Class": [max_class["label"]],
"Probability": [max_class["score"]],
}
)
st.table(df)