import os import warnings import logging # Suppress TensorFlow warnings os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' os.environ['TF_LOGGING_LEVEL'] = 'ERROR' os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0' # Suppress specific TensorFlow deprecation warnings warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow') logging.getLogger('tensorflow').setLevel(logging.ERROR) from fastapi import FastAPI, Request, HTTPException, Depends, Header from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel from parser import parse_pdf_from_url, parse_pdf_from_file from embedder import build_faiss_index from retriever import retrieve_chunks from llm import query_gemini import uvicorn app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0") # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/") async def root(): return {"message": "HackRx Insurance Policy Assistant API is running!"} @app.get("/health") async def health_check(): return {"status": "healthy", "message": "API is ready to process requests"} class QueryRequest(BaseModel): documents: str questions: list[str] class LocalQueryRequest(BaseModel): document_path: str questions: list[str] def verify_token(authorization: str = Header(None)): if not authorization or not authorization.startswith("Bearer "): raise HTTPException(status_code=401, detail="Invalid authorization header") token = authorization.replace("Bearer ", "") # For demo purposes, accept any token. In production, validate against a database if not token: raise HTTPException(status_code=401, detail="Invalid token") return token @app.post("/api/v1/hackrx/run") async def run_query(request: QueryRequest, token: str = Depends(verify_token)): try: print(f"Processing {len(request.questions)} questions...") text_chunks = parse_pdf_from_url(request.documents) print(f"Extracted {len(text_chunks)} text chunks from PDF") index, texts = build_faiss_index(text_chunks) # Get relevant chunks for all questions at once all_chunks = set() for question in request.questions: top_chunks = retrieve_chunks(index, texts, question) all_chunks.update(top_chunks) # Process all questions in a single LLM call print(f"Processing all {len(request.questions)} questions in batch...") response = query_gemini(request.questions, list(all_chunks)) # Extract answers from the JSON response if isinstance(response, dict) and "answers" in response: answers = response["answers"] # Ensure we have the right number of answers while len(answers) < len(request.questions): answers.append("Not Found") answers = answers[:len(request.questions)] else: # Fallback if response is not in expected format answers = [response] if isinstance(response, str) else [] # Ensure we have the right number of answers while len(answers) < len(request.questions): answers.append("Not Found") answers = answers[:len(request.questions)] print(f"Generated {len(answers)} answers") return { "answers": answers } except Exception as e: print(f"Error: {str(e)}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") @app.post("/api/v1/hackrx/local") async def run_local_query(request: LocalQueryRequest): try: print(f"Processing local document: {request.document_path}") print(f"Processing {len(request.questions)} questions...") # Parse local PDF file text_chunks = parse_pdf_from_file(request.document_path) print(f"Extracted {len(text_chunks)} text chunks from local PDF") index, texts = build_faiss_index(text_chunks) # Get relevant chunks for all questions at once all_chunks = set() for question in request.questions: top_chunks = retrieve_chunks(index, texts, question) all_chunks.update(top_chunks) # Process all questions in a single LLM call print(f"Processing all {len(request.questions)} questions in batch...") response = query_gemini(request.questions, list(all_chunks)) # Extract answers from the JSON response if isinstance(response, dict) and "answers" in response: answers = response["answers"] # Ensure we have the right number of answers while len(answers) < len(request.questions): answers.append("Not Found") answers = answers[:len(request.questions)] else: # Fallback if response is not in expected format answers = [response] if isinstance(response, str) else [] # Ensure we have the right number of answers while len(answers) < len(request.questions): answers.append("Not Found") answers = answers[:len(request.questions)] print(f"Generated {len(answers)} answers") return { "answers": answers } except Exception as e: print(f"Error: {str(e)}") raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") if __name__ == "__main__": port = int(os.environ.get("PORT", 10000)) uvicorn.run("main:app", host="0.0.0.0", port=port)