Rivalcoder
[Edit] Add Languages
bd67de7
raw
history blame
11 kB
import os
import warnings
import logging
import time
import json
import hashlib
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
import re
# Set up cache directory for HuggingFace models
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
logging.getLogger('tensorflow').setLevel(logging.ERROR)
from fastapi import FastAPI, HTTPException, Depends, Header, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
from embedder import build_faiss_index, preload_model
from retriever import retrieve_chunks
from llm import query_gemini
import uvicorn
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
print("Starting up HackRx Insurance Policy Assistant...")
print("Preloading sentence transformer model...")
preload_model()
print("Model preloading completed. API is ready to serve requests!")
@app.get("/")
async def root():
return {"message": "HackRx Insurance Policy Assistant API is running!"}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
class QueryRequest(BaseModel):
documents: str
questions: list[str]
class LocalQueryRequest(BaseModel):
document_path: str
questions: list[str]
def verify_token(authorization: str = Header(None)):
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid authorization header")
token = authorization.replace("Bearer ", "")
if not token:
raise HTTPException(status_code=401, detail="Invalid token")
return token
def process_batch(batch_questions, context_chunks):
return query_gemini(batch_questions, context_chunks)
def get_document_id_from_url(url: str) -> str:
return hashlib.md5(url.encode()).hexdigest()
def question_has_https_link(q: str) -> bool:
return bool(re.search(r"https://[^\s]+", q))
# Document cache with thread safety
doc_cache = {}
doc_cache_lock = Lock()
# ----------------- CACHE CLEAR ENDPOINT -----------------
@app.delete("/api/v1/cache/clear")
async def clear_cache(doc_id: str = Query(None, description="Optional document ID to clear"),
url: str = Query(None, description="Optional document URL to clear"),
doc_only: bool = Query(False, description="If true, only clear document cache")):
"""
Clear cache data.
- No params: Clears ALL caches.
- doc_id: Clears caches for that document only.
- url: Same as doc_id but computed automatically from URL.
- doc_only: Clears only document cache.
"""
cleared = {}
# If URL is provided, convert to doc_id
if url:
doc_id = get_document_id_from_url(url)
if doc_id:
if not doc_only:
with doc_cache_lock:
if doc_id in doc_cache:
del doc_cache[doc_id]
cleared["doc_cache"] = f"Cleared document {doc_id}"
else:
if not doc_only:
with doc_cache_lock:
doc_cache.clear()
cleared["doc_cache"] = "Cleared ALL documents"
return {"status": "success", "cleared": cleared}
@app.post("/api/v1/hackrx/run")
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
start_time = time.time()
timing_data = {}
try:
print("=== INPUT JSON ===")
print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
print("==================\n")
print(f"Processing {len(request.questions)} questions...")
# PDF Parsing and FAISS Caching (keep document caching for speed)
doc_id = get_document_id_from_url(request.documents)
with doc_cache_lock:
if doc_id in doc_cache:
print("✅ Using cached document...")
cached = doc_cache[doc_id]
text_chunks = cached["chunks"]
index = cached["index"]
texts = cached["texts"]
else:
print("⚙️ Parsing and indexing new document...")
pdf_start = time.time()
text_chunks = parse_pdf_from_url(request.documents)
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
doc_cache[doc_id] = {
"chunks": text_chunks,
"index": index,
"texts": texts
}
# Retrieve chunks for all questions — no QA caching
retrieval_start = time.time()
all_chunks = set()
question_positions = {}
for idx, question in enumerate(request.questions):
top_chunks = retrieve_chunks(index, texts, question)
all_chunks.update(top_chunks)
question_positions.setdefault(question, []).append(idx)
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
print(f"Retrieved {len(all_chunks)} unique chunks for all questions")
# Query Gemini LLM fresh for all questions
context_chunks = list(all_chunks)
batch_size = 10
batches = [(i, request.questions[i:i + batch_size]) for i in range(0, len(request.questions), batch_size)]
llm_start = time.time()
results_dict = {}
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
for (start_idx, batch), future in zip(batches, futures):
try:
result = future.result()
if isinstance(result, dict) and "answers" in result:
for j, answer in enumerate(result["answers"]):
results_dict[start_idx + j] = answer
else:
for j in range(len(batch)):
results_dict[start_idx + j] = "Error in response"
except Exception as e:
for j in range(len(batch)):
results_dict[start_idx + j] = f"Error: {str(e)}"
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]
timing_data['total_time'] = round(time.time() - start_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
for k, v in timing_data.items():
print(f"{k}: {v}s")
print(f"=======================\n")
print(f"=== OUTPUT JSON ===")
print(json.dumps({"answers": responses}, indent=2))
print(f"==================\n")
return {"answers": responses}
except Exception as e:
print(f"Error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/api/v1/hackrx/local")
async def run_local_query(request: LocalQueryRequest):
start_time = time.time()
timing_data = {}
try:
print("=== INPUT JSON ===")
print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
print("==================\n")
print(f"Processing {len(request.questions)} questions locally...")
pdf_start = time.time()
text_chunks = parse_pdf_from_file(request.document_path)
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
print(f"Extracted {len(text_chunks)} text chunks from PDF")
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
retrieval_start = time.time()
all_chunks = set()
for question in request.questions:
top_chunks = retrieve_chunks(index, texts, question)
all_chunks.update(top_chunks)
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
questions = request.questions
context_chunks = list(all_chunks)
batch_size = 20
batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
llm_start = time.time()
results_dict = {}
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
for (start_idx, batch), future in zip(batches, futures):
try:
result = future.result()
if isinstance(result, dict) and "answers" in result:
for j, answer in enumerate(result["answers"]):
results_dict[start_idx + j] = answer
else:
for j in range(len(batch)):
results_dict[start_idx + j] = "Error in response"
except Exception as e:
for j in range(len(batch)):
results_dict[start_idx + j] = f"Error: {str(e)}"
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
timing_data['total_time'] = round(time.time() - start_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
for k, v in timing_data.items():
print(f"{k}: {v}s")
print(f"=======================\n")
print(f"=== OUTPUT JSON ===")
print(json.dumps({"answers": responses}, indent=2))
print(f"==================\n")
return {"answers": responses}
except Exception as e:
print(f"Error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port)